GBC>>>

CHAPTER RATIO AND PROPORTION

PAST YEAR QUESTIONS

PROPORTION

1.	. The third proportional to $(a^2 - b^2)$ and $(a+b)^2$ is : Feb - 2008	
	(a) $\frac{a+b}{b}$ (b) $\frac{a-b}{b}$ (c) $\frac{(a-b)^2}{b}$ (d) $\frac{(a+b)}{b}$	3
	Solution: $a+b$ $a+b$ $a+b$	
	a^2-b^2 $(a+b)^2$ $\rightarrow p$ $(a+b)^2(a+b)^2$ $\rightarrow p$ $(a+b)^3$	
	$\frac{1}{(a+b)^2} = \frac{1}{p} \Rightarrow r = \frac{1}{(a-b)(a+b)} \Rightarrow r = \frac{1}{a-b}$	
2.	Fourth proportional to x, $2x$, $(x+1)$ is : June - 2009	
	(a) $(x+2)$ (b) $(x-2)$ (c) $(2x+2)$ (d) $(2x-2)$	2)
	Solution:	
	$\frac{x}{2x} = \frac{x+1}{p} \qquad Px = 2x+2$	
3.	Which of the numbers are not in proportion ? June-2012	
	(a) $6, 8, 5, 7$ (b) $7, 14, 6, 12$ (c) $18, 27, 12, 18$ (d) $8, 6, 6$	12, 9
	$a_{1}c_{2} = 6.5 7.6 / \frac{318}{27}$	
	$\frac{d}{b} = \frac{d}{d} - \text{Proportion} \Rightarrow \frac{d}{8} = \frac{d}{7} \Rightarrow \frac{d}{14^2} = \frac{d}{12^2} \qquad 9^{2/3} \neq 18$	
	$\left \frac{2}{2}\overline{z}\frac{2}{z}\right $	
	$\frac{3}{482}$ $\frac{3}{124}$	
	$\frac{7}{36} = \frac{7}{9^3}$	
	\rightarrow 4 4	
	$-\frac{3}{3}-\frac{3}{3}$	
4.	Find two numbers such that mean proportional between them is 18 and third to them is 144 Dec 2012	d proportional
	(a) 9.36 (b) 8.32 (c) 7.28 (d) 6.24	
	$\begin{array}{c} (0) & (0) & (0) \\ x & 18 \end{array}$	324
	Solution : let the two numbers be x & y \Rightarrow x : 18:18:y $\Rightarrow \frac{1}{18} = \frac{1}{9} \Rightarrow \frac{1}{18} = \frac{1}{18} \Rightarrow \frac{1}{18} \Rightarrow \frac{1}{18} = \frac{1}{18} \Rightarrow \frac{1}{$	$x ={y}$
	(i)	,
	$\mathbf{x}: \mathbf{y}: \mathbf{y}: 144 \implies \frac{x}{y} = \frac{y}{144} \implies x.144 = y^2 \implies x = \frac{y^2}{14^n}$ (ii)	
	Comparing (i) and (ii)	
	$\frac{324}{2} = \frac{y^2}{2} \implies y^3 = 46656 \implies y = 36$	
	y 144	
5.	The mean proportional between 24 and 54 is : June-2013 (1) 22 (1) 24 (1) 25 (1) 25	
	(a) 33 (b) 34 (c) 35 (d) 36	
	Solution: 24 : x : x : 54 $\frac{2}{x} = \frac{x}{54}$ x = 36	2015
0.	1 In the ratio of third proportion of 12, 30 to the mean proportion of 9, 25 is : D (a) $2 \cdot 1$ (b) $5 \cdot 1$ (c) $7 \cdot 15$ (d) $3 \cdot 5$	ec-2015
	Solution :	

	12:30::30:	X	mean proportion = $\sqrt{9 \times 25}$	
	$\Rightarrow \frac{12}{30} - \frac{30}{30}$		=15	
	30 x		10	
	$\Rightarrow x = 75$			
	ratio=75 : 15			
	=5 : 1			
7.	What number must be adde	ed to each	h of the numbers 10, 18, 22, 3	38 to make the numbers
	1s proportion? Dec-2015 (a) 2 (b) 4		(c) 8	(d) None of these
	Solution :			(d) Hone of these
	let, the number is x $(10 + m) + (12 + m) + (22 + m)$) . (29)		
	(10+x) : (18+x) : (22+x) 10+x 22+x):(38+X)		
	$\Rightarrow \frac{10+x}{18+x} + \frac{22+x}{38+x}$			
	$\Rightarrow (10+x)(38+x)=(22+x)(28+x)=(22$	x)(18+x)		
	$\Rightarrow 380+10x+38x+x^2=3$ $\Rightarrow 8x-16$	396+22x+1	8x+x ²	
8.	If $a:b = 2:3$, $b:c = 4:5$ and c	c;d = 6:7,	then a:d is: June - 2017	
	(a) 24:35 (b) 8:15		(c) 16:35	(d) 7:15
	Solution : $a \rightarrow b$	1	6 6	
	$\frac{a}{b} = \frac{2}{3} \times 4$ $\frac{b}{c}$	$=\frac{1}{5}\times3$	$\frac{c}{d} = \frac{0}{7}$	
	a 8	b	12	
	$\frac{a}{b} = \frac{a}{12}$	$\frac{c}{c} =$	15	
	a _ 8	<i>c</i>	- ⁶ ×15	
	$\frac{-1}{c}$	$\frac{d}{d}$	7	
	$\frac{a}{48}$	<u> </u>	= <u>90</u>	
	c 90	d	105	
	$\frac{d}{d} = \frac{48}{105} = \frac{10}{25}$ 16:	35		
9.	a = 105 = 55 If $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ and $\frac{1}{2}$ are in p	roportion	then the value of 'x' will be :	Dec.2017
	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 5 \\ 15 \\ 15 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	roportion	, then the value of x will be .	(d) ⁵
	$(a) \frac{1}{2}$ $(b) \frac{1}{5}$. 1	$(c)\frac{1}{3}$	$(u) -\frac{1}{6}$
	Solution : If $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{5}$, an	$d = \frac{1}{x}$ are i	n proportion, then, product o	of extremes= product of
	means 1 1 1 1			
	$- \times - = - =$			
	$\frac{1}{2x} = \frac{1}{3}$			
	2x=15			
10	X=15/2 The mean proportional bety	ween 24	and 54 is · May-2018	
10.	(a) 33 (b) 34	ween 24 a	(c) 35	(d) 36
	Solution:			× /
	Mean proportion $b = \sqrt{ac}$			
	$=\sqrt{24 \times 54}$			
	=√1296 -36			
	-50		ратю	

RATIO

11. If p : q is the sub-duplicate ratio of $p - x^2$: $q - x^2$, then x^2 is : Nov – 2006, May 2018 (a) $\frac{p}{p+q}$ (b) $\frac{q}{p+q}$ (c) $\frac{qp}{p-q}$ (d) None

Solution: Sub duplicate ratio of (p-x²): (q-x²)= $\sqrt{p-x^2}$: $\sqrt{q-x^2}$ **P:** $q=\sqrt{p-x^2}$: $\sqrt{q-x^2}$ $\frac{p}{q} = \frac{\sqrt{p - x^2}}{\sqrt{q - x^2}}$ An squaring both side $\frac{p^2}{q^2} = \frac{p - x^2}{q - x^2}$ $p^{2}(q-x^{2})=q^{2}(p-x^{2})$ p^2q -q²x²=q²p-q²x² $p q - q^2 p = p^2 x^2 - q^2 x^2$ $Pq(p-q) = (p^2-q^2)x^2$ $Pq(p-q)=(p+q)(p-q)x^2$ 1 **q**(**p**-**q**)-(**p**+**q**)(**p**-**q**) **x**² = $\frac{pq(p-q)}{(p+q)(p-q)}$ **x**² = $\frac{pq}{(p+q)}$ 12. If $\frac{p}{q} = -\frac{2}{3}$ then the value of $\frac{2p+q}{2p-q}$ is : June - 2009 (b) -1/7 (c) 1/7 (a) 1 (d) 7**Solution:** $\frac{p}{q} = \frac{-3}{3} \Longrightarrow P = \frac{-2q}{3} = \frac{2p+q}{2p-q} \Longrightarrow \frac{2\left(\frac{-2q}{3}\right)+q}{2\left(\frac{2q}{3}\right)-q} \Longrightarrow \frac{\frac{4q}{3}+q}{\frac{-4q}{2}-q}$ $\Rightarrow \frac{\frac{-4q+3q}{3}}{\frac{-4q-3q}{3}} \Rightarrow \frac{\frac{-q}{3}}{\frac{-7q}{3}} \Rightarrow \frac{-q}{3} \times \frac{3}{-7q}$ $=\frac{1}{7}$ If A : B = 2 : 5, then (10A + 3B): (5A + 2B) is equal to **Dec - 2010** 13. (a) 7:4 (b) 7:3 (c) 6:5 (d) 7:9 **Solution:** A=2 $\mathbf{B} = \mathbf{5}$ $\frac{10A+3B}{5A+2B} = \frac{10.2+3.5}{5.2+2.5} \Longrightarrow \frac{35}{20}$ The ratio Compounded of 4 : 5 and sub-duplicate ratio of "a" : 9 is 8 : 15 Then Value of 14. "a" is : **Dec-2011** (a) 2 (b) 3(c) 4(d) 5 Solution: $\frac{8}{15} = \frac{4}{5} \times \frac{\sqrt{a}}{\sqrt{9}} \implies \sqrt{a} = \frac{8 \times 5 \times 3}{4 \times 15} = 2 \implies a = 4$ The triplicate ratio of 4 : 5 is: June-2013 15. (a) 125 : 64 (b) 16 : 25 (c) 64 : 125 (d) 120 : 46 Solution: the triplicate ratio of $4:5=4^3:5^3$ =64:125 If x : y = 2: 3 then (5x + 2y) : (3x - y) = **June - 2014 16.** (a) 19:3 (b) 16:3 (c) 7:2 (d) 7:3. **Solution:** $\frac{x}{4} = \frac{2}{3}$, let, x = 2k, y = 3k $\frac{5x+2y}{3x-y} = \frac{5.2k+2.3k}{3.2k-3k} = \frac{10k+6k}{3k}$

 $=\frac{16k}{k}=\frac{16}{3}=16:3$ If $15(2p^2-q^2)=7pq$, where p and q are positive, then p : q will be: **Dec-2015** 17. (a) 5 : 6 (b) 5 : 7 (c) 3:5(d) 8:3**Solution:** $15(2p^2-q^2) = 7pq$ \Rightarrow 30p²-15q²=7pq \Rightarrow 30p²-7pq-15q²=0 \Rightarrow 30p²-(25-18)pq-15q²⁼⁰ \Rightarrow 30p²-25pq+18pq-15q²=0 \Rightarrow 5p(6p-5q)+3q(6p-5a)=0 \Rightarrow (6p-5q)(5p+3q)=0 6p=5q 5p=-3q18. What must be added to each term of the ratio 49 : 68, so that it becomes 3:4? June-2010 (d) 9(a) 3(b) 5 (c) 8**Solution:** $\frac{49+x}{68+x} = \frac{3}{4}$ $\frac{3x-2}{5x+6}$ is the duplicate ratio of $\frac{2}{3}$ then find the value of x: **Nov-2018** 19. (b) 6 (d) 9 (a) 2(c) 5 Solution: $\frac{3x-2}{5x+6}$ is the duplicate ratio of $\frac{2}{3}$ i.e. $\frac{3x-2}{5x+6} = \frac{2^2}{3^2}$ or $\frac{3x-2}{-4} = \frac{4}{-3}$ or $\frac{3x-2}{5x+6} = \frac{4}{9}$ 27x-18=20x+24 27x-20x=24+18 7x=42 X=6 If x : y : z = 7 : 4 : 11 then $\frac{x+y+z}{z}$ is: Nov-2018 20. (a) 2 (b) 3 (c) 4 (d) 5 Solution: If x:y:z=7:4:11 Let x=7k,y=4k,z=11k $\frac{x+y+z}{2} = \frac{7k+4k+11k}{11k} = \frac{22k}{11k} = 2$ 21. if a:b =3:7, then 3a + 2b : 4a + 5b = ? Nov - 2020(a) 23:47 (b) 27: 43 (c) 24:51 (d) 29:53 Solution: If a:b=3:7 Let a=3k, b=7k $\frac{3a+2b}{4a+5b} = \frac{3 \times 3k+2 \times 7k}{4 \times 3k+5 \times 7k} = \frac{9k+14k}{12k+35k}$ 4a+5b =23k47k =23:47 22. If a:b = 9 : 4, then $\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} = ?$ Nov - 2020 (a) 3/2(b) 2/3(c) 6/13 (d) 13/6 Solution: If a:b=9:4 Let a=9k,b=4k $\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} = \sqrt{\frac{9k}{4k}} + \sqrt{\frac{4k}{9k}}$ $=\frac{9+4}{6}=\frac{13}{6}$ If A : B = 5 : 3, B : C = 6 : 7 and C : D = 14 : 9 then the value of A : B : C : D July – 23. 2021

2.4

(a) 20 : 14 : 12 : 9 (b) 20 : 9 : 12 : 14 (c) 20:9:14:12(d) 20:12:14:9 Solution: (d) We have $\frac{A}{B} = \frac{5}{3}$ and $\frac{B}{C} = \frac{6}{7}$ To make the Bs same, let's multiply $\frac{A}{B} = \frac{5}{3}$ with $\frac{2}{2}$ Now, $\frac{A}{B} = \frac{5}{3} \times \frac{2}{2} = \frac{10}{6}$ and $\frac{B}{C} = \frac{6}{7}$ Also, we have $\frac{C}{D} = \frac{14}{9}$ To make the Cs same, let's multiply $\frac{B}{C} = \frac{6}{7}$ with $\frac{2}{2}$ Therefore, $\frac{B}{C} = \frac{6}{7} \times \frac{2}{2} = \frac{12}{14}$ Now, we have $\frac{A}{B} = \frac{10}{6}$; $\frac{B}{C} = \frac{12}{14}$; $\frac{C}{D} = \frac{14}{9}$ Again, to make the Bs same, let's multiply $\frac{A}{R} = \frac{10}{6}$ with $\frac{2}{2}$ Therefore, $\frac{A}{B} = \frac{10}{6} \times \frac{2}{2} = \frac{20}{12}$. So, now we have $\frac{A}{B} = \frac{20}{12}$; $\frac{B}{C} = \frac{12}{14}$; $\frac{C}{D} = \frac{14}{9}$ Therefore, A : B : C: D = 20 : 12 : 14 : 9 If x: y = 4 : 6 and z : x = 4 : 16 find Y? **June 2022** 24. (a) 4 (b) 6 (c) 16 (d) 1 **Solution:** (b) If x:y = 4:6 and z:x = 4:16 find y \Rightarrow z:x = 1:4 so, y:x = 6:4 and x:z = 4:1y:x:z = 6:4:1so, y = 6

STATEMENT TYPE

25. An alloy is to contain copper and zinc in the ratio 9 : 4. The zinc required to melt with 24kg of copper is: **Nov-2006**

(a)
$$10\frac{2}{3}kg$$
 (b) $10\frac{1}{3}kg$ (c) $9\frac{2}{3}kg$ (d) 9 kg
Solution: $\frac{9x}{4x} = \frac{24}{p} \implies P = \frac{24 \times 4}{9} = \frac{32}{3} = 10\frac{2}{3}Kg$

- 26. If X Varies inversely as square of Y and given that Y = 2 for X = 1, then the Value of X for Y = 6 will be : Dec 2011
 - (a) 6 (b) 9 (c) 1/3 (d) 1/9 **Solution:** $x \times \frac{1}{y^2} \Rightarrow x = \frac{k}{y^2}$
- 27. Ratio of earnings of A and B is 4 : 7. If the earnings of A increase by 50% and those of B decrease by 25%, the new ratio of their earning becomes 8:7. What is A's earning ? : Aug 2007
 - (a) ₹ 21,000 (b) ₹ 26,000 (c) ₹ 28,000 (d) Data inadequate Solution: $\frac{4x+2x}{7x-1.75x} = \frac{8}{7} \implies 56x-13.6x = 28x+14x$
- 28. P, Q and R are three cities. The ratio of average temperature between P and Q is 11 : 12 and that between P and R is 9 : 8. The ratio between the average temperature of Q and R is : Aug-2007
 - (a) 22:27 (b) 27 :22 (c) 32 :33 (d) None.
- 29. ₹ 407 are to be divided among A, B and C so that their shares are in the ratio ¹/₄: ¹/₅: ¹/₆. The respective shares of A, B, C are : Nov-2007

 (a) ₹ 165, ₹ 132, ₹ 110
 (b) ₹ 165, ₹ 110, ₹ 132

(c) ₹ 132, ₹ 110, ₹ 165

Solution:
$$\frac{x}{4} + \frac{x}{5} + \frac{x}{6} = 407$$

 $\Rightarrow \frac{80x + 24x + 20x}{120} = 407 \Rightarrow x = 660 \Rightarrow \frac{660}{4}, \frac{660}{5}, \frac{660}{6} \Rightarrow 165 \quad 132 \quad 110$

30. If A, B and C started a business by investing ₹ 1,26,000, ₹ 84,000 and ₹ 2,10,000. Sharing profits in ratio of capital If at the end of the year profit is ₹ 2,42,000 then the share of each is: Dec-2008

(a) 72,600, 48,400, 1,21,000
(b) 48,400, 1,21,000, 72,600
(c) 72,000, 49,000, 1,21,000
Solution:
$$\frac{A}{B} = \frac{126000}{84000} = \frac{126}{84}$$

 $\frac{B}{C} = \frac{84000}{210000} = \frac{84}{210}$
A : B : C = 126 : 84 : 210

31. The students of two classes are in the ratio 5 : 7, if 10 students left from each class, the remaining students are in the ratio of 4 :6 then the number of students left in each class is : **June-2010**

(a) 30,40 (b) 25,24 (c) 40,60 (d) 50,70
Solution :
$$\frac{5x-10}{7x-10} = \frac{4}{6} \Rightarrow 28x - 40 = 30x - 60 \Rightarrow 20 = 2x$$

 $B = 5$
 $\frac{10A+3B}{5A+2B} = \frac{102+3.5}{5.2+2.5} \Rightarrow \frac{35}{20}$

32. In a film shooting, A and B received money in a certain ratio and B and C also received the money in the same ratio. If A gets ₹ 1,60,000 and C gets ₹ 2,50,000. Find the amount received by B.: June-2011

(a) ₹ 2,00,000 (b) ₹ 2,50,000 (c) ₹ 1,00,000 (d) ₹ 1,50,000 Solution : $\frac{A}{B} = \frac{B}{C}$ $\therefore B = \sqrt{160000 \times 250000}$ = ₹ 2,00,000

- **33.** Find three numbers in the ratio 1 : 2 : 3, so that the sum of their squares is equal to 504 **Dec-2013**
 - (a) 6, 12, 18 (b) 3, 6, 9 (c) 4, 8, 12 (d) 5, 10, 15 **Solution:** Let, the no's x, 2x, 3x $x^{2} + (2x)^{2} + (3x)^{2} = 504$ $x^{2} + 4x^{2} + 9x^{2} = 504$ $14x^{2} = 504$
- 34. Divide 80 into two parts so that their product is maximum, then the numbers are Dec-2013 (a) 25, 55 (b) 35, 45 (c) 40, 40 (d) 15, 65 Solution: The sum of two No.=80 First No. x Second No.= (80-x)Product two No =x.(80-x) $P = 80x - x^2$ w.r.f.(x) $\frac{dq}{dt} = 80-2x$ dx $d^2p/dx^2 = -2$ For max/manima

dp/dx=0 80-2x=0 2x=80 x=40 x=40 in equation (iii) $d^{2}p/dx^{2}=-2 \text{ (Negative)}$ function is maximum at x=40 Numbers are 40,(80-40) =40,40

35. If the salary of P is 25% lower than that Q and the salary of R is 20% higher than that of Q, the Ratio of the salary of R and P will be : **June-2014**

(a) 5:8 (b) 8:5 (c) 5:3 (d) 3:5
Solution: let, the salary of Q=100
P's Salary =100 - 25: = 75
R's Salary =100 + 20: =120

$$\Rightarrow x^2+y^2+2x = 9xy$$

 $\Rightarrow (x + y)^2 = 9xy$
 $\Rightarrow \log (x + y)^2 = \log 9xy$
 $\Rightarrow 2 \log(x+y) = 2 \log^3 + \log x + \log y$
 $\Rightarrow 2\log(x+y)-2\log^3 = \log^x + \log^y$
 $\Rightarrow 2(\log(\frac{x+y}{3}) = \log x + \log y)$
 $\Rightarrow \log \frac{1}{3}(x+4) = \frac{1}{2}(\log x + \log y)$

36. A person has assets worth ₹1,48,200. He wish to divide it amongst his wife, son and daughter in the ratio 3:2:1 respectively. From this assets, the share of his son will be: June-2014 (a) ₹ 24,700 (b) ₹ 49,400 (c) ₹ 47,100 (d) ₹ 37,050

Solution: Total Worth of Assets =1,48,200

37. For three months, the salary of a person are in the ratio 2:4:5. If the difference between the product of salaries of the first two months and last two months is ₹ 4,80,00,000; then the salary of the second month will be : Dec-2014

(a) ₹ 4,000 (b) ₹ 6,000 (c) ₹ 8,000 (d) ₹ 12,000 Solution: let, the salary of three months 2x, 4x, 5x $(4x \times 5x) - (4x \times 2x) = 4,80,00,000$ $20x^2 - 8x^2 = 4,80,00,000$ $12x^2 = 4,80,00,000$ x = 2000

38. X, Y, Z together starts a business, If X invests 3 times as much as Y invests and Y invests two third of what Z invests, then the ratio of capitals of X, Y, Z is **June-2016**

(a) 3:9:2 (b) 6:3:2 (c) 3:6:2 (d) 6:2:3
Solution: X=3y
$$y = \frac{2}{3}z$$

 $\frac{x}{y} = \frac{3}{1}$ $\frac{y}{z} = \frac{2}{3}$
 $x : y = 3:1$ $y : z = 2:3$
 $x : y = 6:2$
 $x : y : z = 6:2$

39. A group of 400 soldiers posted at border area had a provision for 31 days. After 28 days 280 soldiers from this group were called back. Find the number of days for which the remaining ration will be sufficient? Dec 2022

(a) 3
(b) 6
(c) 8
(d) 10

Here, total men=400, No. of days=31 Total No. of unit of food for 400 men in 31 days $=400 \times 31 = 12400$ unit Total No. of unit of food for 400 men in 28 days $=400 \times 28 = 11200$ unit Rest food=12400-11200=1200unit Remain men after 28 days = 400-280=120No. of days for which the remaining food will be sufficient Total Rest food No.of remaining men $=\frac{1200}{120}$ 10 days **40.** The ratio of number of boys and the number of girls in a school is found to be 15 : 32. How many boys and equal number of girls should be added to bring the ratio to 2/3? Nov – 2020 (a) 19 (b) 20 (c) 23(d) 27 Solution: On calculator, we find that 2/3=0.67Let the number added to each term of the ratio15:32 be x. Option (a) 19 $\frac{\frac{15+19}{32+19}}{=0.67}$ Therefore, option (a) is the answer **41.** In a certain business A and B received profit in a certain ratio B and C received profits in the same ratio. If A gets ₹1600 and C gets ₹2500 then how much does B get? Jan – 2021 (a) ₹ 2,000 (b) ₹ 2,500 (c) ₹ 1,000 (d) ₹ 1,500 Solution: $\frac{A}{B} = \frac{B}{C}$ $B^2 = A \times C$ $B = \sqrt{A \times C} = \sqrt{1600 \times 2500} = 2000$ 42. The ratio of two quantities is 15:17. If the consequent of its inverse ratio is 15, then the antecedent is; Jan – 2021 (b) $\sqrt{15}$ (a) 15 (c) 17 (d) 14 Solution: Inverse ratio= $\frac{17}{15}$ Therefore, antecedent=17 43. The salaries of A, B and C are in the ratio 2:3:5. If increments of 15%, 10% and 20% are allowed respectively to their salary, then what will be the new ratio of their salaries? Jan – 2021, July 2021 (a) 3 : 3 : 10 (b) 10 : 11 : 20 (c) 23 : 33 : 60 (d) Cannot be determined Science the ration of the salaries of A,B and C is 2:3:5, let the salaries be 200,300 and 500 respectively. A's new salary=200 +(15% of 200)=230 B's new salary=300 +(10% of 300)=330 C's new salary=500 +(20% of 500)=600 Therefore, clearly, the new ratio is 23:33:60 44. Incomes of R and S are in the ratio 7:9 and their expenditures are in the ratio 4:5. Their total expenditures is equal to income of R. What is the ratio of their savings? Dec 2021 (a) 23:36 (b) 28:41 (c) 31:43 (d) 35:46 Solution: Let the income of R and S be in 7x and 9x respectively, and their expenditures be 4y and 5y respectively. Savings of R=7x-4y Savings of S=9x-5y Also, it is given that their total expenditures is equal to the income of R.

Therefore, 4y+5y=7x $\rightarrow 9y = 7x$ $\rightarrow x = \frac{9y}{7}...Eq.(1)$ Ratio of their expenditures= $\frac{7x-4y}{9x-5y}$ Putting the value of $x = \frac{9y}{7}$ from Eq. (1) Above: $\frac{7(\frac{9y}{7})-4y}{9(\frac{9y}{7})-5y}$ $= \frac{5y}{\frac{81y-35y}{7}}$ $= \frac{7\times5y}{46y}$

$$=\frac{46y}{46y}$$

45. In a department, the number of males and females are in the ratio 3:2. If 2 males and 5 females join the department, then the ratio becomes 1 : 1. Initially, the number of females in the department is **Dec 2021**

(a) 9(b) 6(c) 3(d) 8Solution: Let the initial number of males and females be 3x and 2x respectively. As per the question, $\frac{3x+2}{2x+5} = \frac{1}{1}$ Or 3x + 2 = 2x + 5Or 3x-2x=5-2 Or x=3Therefore .initial number of fimales= $2 \times 3 = 6$ **46.** If $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0$ then the value of $\left(\frac{a+b+c}{3}\right)^3$ is equal to: **June 2023** (a) abc (b) 9abc (c) 1/abc (d) 1/9abc Solution: If $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0$ $(a)^{1/3}+(b)^{1/3}+(c)^{1/3}=0$ Let $a^{1/3}=x,b^{1/3}=y,c^{1/3}=z$ Then x+y+z+0 And $a=x^3, b=y^3, c=z^3$ Now if x+y+z=0 then $x^3+y^3+z^3=3xyz$ Now $\left(\frac{a+b+c}{3}\right)^3 = \left(\frac{x^3+y^3+z^3}{3}\right)^{\prime}_{\prime}^3 = \left(\frac{3xz}{3}\right)^3 = (a^{1/3}.b^{1/3}.c^{1/3})$ $=(abc)^{1/3\times3}=abc$ **47.** Given that $\log_{10}x=m+n-1$ and $\log_{10}y=m-n$, the value of \log_{10} $\left(\frac{100x}{y^2}\right)$ expressed in terms of m and n is: **June 2023** (d) $m^2 - n^2$ (a) 1-m+3n(b) m-1+3n(c) m+3n+1Solution: Given that log₁₀x=m+n-1 and log₁₀y=m-n, log₁₀ Then $\log_{10}\left(\frac{100x}{y^2}\right) = \log_{10} 100x - \log_{10}y^2$ $= 2 + \log_{10} x - 2 \log_{10} y$ =2+m+n-1-2(m-n)=2+m+n-1-2m+2n=1-m+3n

Ratio & Proportion

2.10

48. The value of $\{\log_6\{3\log_{10}100\}\}$ (c) 10 (d) 100 (a) 1 (b) 2 Solution: $[\log_6 \{3\log_{10}100\}] = \log_6 \{3\log_{10}10^2\}$ $= \log_6 \{3 \times 2 \log_{10} 10\}$ $= \log_6 \{6 \times 1\}$ $=\log_{6}6$ =1 **49.** If $x=y^{a}$, $y=z^{b}$, $z=x^{e}$ then the value of abc is (a) 1 (b) 2 (d)4 (c) 3 Solution: $x=y^{a}, y=z^{b}, z=x^{e}$ logx=logy^a,logy=logz^b,logz=logx^e logx=a logy, logy=b logz logz =c logx $a = \frac{\log x}{\log y}, b = \frac{\log y}{\log z}, c =$

								A	Answ	er Ke	y								
1.	d	2.	с	3.	a	4.	a	5.	d	6.	b	7.	a	8.	с	9.	a	10.	d
11.	d	12.	с	13.	a	14.	с	15.	с	16.	b	17.	a	18.	с	19.	b	20.	a
21.	a	22.	d	23.	d	24.	b	25.	a	26.	d	27.	d	28.	b	29.	a	30.	a
31.	с	32.	a	33.	a	34.	с	35.	b	36.	b	37.	с	38.	d	39.	d	40.	a
41.	a	42.	c	43.	c	44.	d	45.	b										

GBC>>> CHAPTER LOGARITHM

LOG PAST YEAR QUESTIONS

BASIC

1.	If $\log (2a - 3b) = \log a - b$	log b, then $a = : May-2$	007	
	(a) $\frac{3b^2}{2b-1}$	(b) $\frac{3b}{2b-1}$	(c) $\frac{b^2}{2b+1}$	(d) $\frac{3b^2}{2b+1}$
	Solution: log (2a-3)	$b) = \log_a - \log_b$	20+1	2071
	$\Rightarrow \log_{(2a-3b)=\log}$	$(\frac{a}{b}) \implies (2a-3b) = \frac{a}{b}$	$a \Rightarrow a = \frac{3b^2}{2b-1}$	
2.	$\log (m+n) = \log m + \log$	n, m can be expressed	as	: June-2009
	(a) $m = \frac{n}{n-1}$	(b) $m = \frac{n}{n+1}$	(c) $m = \frac{n+1}{n}$	(d) $m = \frac{n+1}{n-1}$
	Solution: log (m+n)=log m+	log n		
3.	$log_4(x^2 + x) - log_4(x - x))$	(+1) = 2. Find x	(a) 1	June-2009
	(a)10	$(\mathbf{D}) \mathbf{U}$	(c) - 1	(d) None of these
	Solution: $\log_4 (x^2 + y) = \log(x^2 + y)$	(x + 1)		
	$\frac{\log(x^2 + x)}{\log^n} - \frac{\log(x^2 + x)}{\log^n}$	$\frac{x+1}{2} = 2$		
	$\log(x^2 + x) - \log(x)$	$(x+1)$ (x^2+1)	<i>x x</i> ²	$+x$, $x^{2}+x$
	\log^4	$rac{y}{x+1} = 2 \implies \log \frac{1}{x+1}$	$\frac{1}{1} = 2.2 \log^2 \qquad \log \frac{1}{x}$	$\frac{1}{x+1} = \log 2^4$ $\frac{1}{x+1} = 2^4$
	$\Rightarrow 2^4 x + 2^4 = x^2 + $ $\Rightarrow x^2 - 16x + x - 1$	$x \implies 16x+16 = x^2 + x$ $6 = 0 \implies x(x-16) = x^2 + x$	$x \Rightarrow x^2 - 15x - 16 =$	$= 0 \implies x^2(16-1)x - 16 = 0$
	x = 16 m-1	$0 = 0 \implies x(x = 10)$	$FI(x = 10) = 0 \qquad \Longrightarrow (x$	(x - 10)(x + 1) = 0
4.	The value of $2\log x + 21$	$ogx^2 + 2logx^3 +$	$+2\log x^{n}_{will b}$	e : : : Dec-2010
	$\frac{\Pi(\Pi+1)\log x}{2}$	(b) $p(n+1) \log x$	(a) $p^2 \log x$	(d) None of these
	Solution : $2 \log x + 2\log x^2 + 2\log x^2$	$\log x^{3} + \dots 2\log x^{n} \implies$	$2[\log x + 2\log x + 3\log x +$	$\dots + n \log^n$]
	$\Rightarrow_2 \log x [1+2+3+$	$\dots +n$] $\Rightarrow_{2 \log n}$	$\frac{n(n+1)}{2} \implies n(n+1)$	1) log n
5.	Solve: $\left(\frac{\log_{10} x - 3}{100}\right) + \left(\frac{11 - 100}{100}\right)$	$\frac{-\log_{10} x}{10} = 2$: Dec-2010	Z	
	$(2) 10^{-1}$	$(1) 10^2$	(-) 10	$(1) 10^3$
	$\log_0 x - 3$ (1)	(\mathbf{b}) $1 = \log_0 x$	(c) 10	(d) ¹⁰
	Solution: $\frac{a_0}{2}$ +	$\frac{1}{3} = 2$		
	$\frac{3\log_0 x - 9 + 22 - 2\log_0}{6}$	$\frac{x}{2} = 2 \Longrightarrow \log_0 x + 13 = 3$	$12 \implies \log_0 x = -1$	$\Rightarrow x=10^{-1}$
6.	Which of the following is	true. If $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \frac{1}{ca}$	$\frac{1}{abc}$: Dec-2012	
	(a) $\log(ab + bc + ca) = ab$	0C	(b) $\log\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) =$	abc
	(c) $\log(abc) = 0$		(d) $\log (a + b + c) = 0$)
		a c + a + b 1	$\rightarrow \log(a \pm b \pm c) = \log(a \pm b \pm c)$	$a_1 \rightarrow \log(a \pm b \pm c) = 0$
_	$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \frac{1}{ab}$	$\frac{1}{bc} \Rightarrow \frac{c+a+b}{abc} = \frac{1}{abc}$	$\Rightarrow \log(a+b+c) = \log(a+b+c)$	g1 $\Rightarrow \log(a+b+c) = 0$
7.	$\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \frac{1}{ab}$ For what value of x, the e	$\frac{1}{bc} \Rightarrow \frac{c+a+b}{abc} = \frac{1}{abc}$ quation $(\log_{\sqrt{x}} 2)^2 = \log_{10} \frac{1}{bc}$	$\Rightarrow \log(a+b+c) = \log(a+b+c$	g1 $\Rightarrow \log(a+b+c) = 0$ 3

8.

9.

10.

11.

12.

Solution:
$$\left(\log_{5^{-2}}^{2}\right)^{2} = \log_{5^{-2}}^{2} \implies \left(\frac{\log_{2}}{\log_{x}}\right)^{2} = \frac{\log^{2}}{\log^{2}}$$

$$\Rightarrow \left(\frac{\log_{2}}{\frac{1}{2}\log_{x}}\right)^{2} = \frac{\log^{2}}{\log^{2}} \implies \left(\frac{2\log^{2}}{\log^{2}}\right)^{2} = \frac{\log^{2}}{\log^{2}} \implies 4\left(\frac{\log^{2}}{\log^{2}}\right)^{2} = \frac{\log^{2}}{\log^{2}}$$

$$\Rightarrow 4\left(\frac{\log_{2}}{\log_{x}}\right)^{2} = \frac{\log^{2}}{\log_{x}} \implies 4\frac{\log^{2}}{\log^{2}} = 1 \implies 4\log^{2} = \log^{2} \implies \log^{2^{4}} = \log^{2^{4}} \implies x = 2^{4} = 16$$

Solution: $\left(\log_{x}, x \log_{x}, y \log_{x}, s^{2}\right)^{2} = \left(\frac{\log_{x}}{\log_{x}}, \frac{\log_{y}}{\log_{x}}, \frac{\log_{x}}{\log_{x}}\right)^{3}$

$$\Rightarrow x^{1} + y^{1} = \pi xy$$

$$\Rightarrow x^{1} + y^{1} = \pi xy$$

$$\Rightarrow x^{1} + y^{1} = \log y$$

$$\Rightarrow \log(x + y)^{2} - \log yy$$

$$\Rightarrow \log(x + y)^{2} - \log y + \log y$$

$$\Rightarrow \log(y + y)^{2} - \log y + \log y$$

$$\Rightarrow \log(y + y)^{2} - \log y + \log y$$

$$\Rightarrow \log(y + y)^{2} - \log y + \log y$$

$$\Rightarrow \log(y + y)^{2} - \log y + \log y$$

$$\Rightarrow \log(y + y)^{2} - \log y + \log y$$

$$\Rightarrow \log(y + y)^{2} - \log y + \log y$$

$$\Rightarrow \log(y + y)^{2} - \log y + \log y$$

$$\Rightarrow \log(y + y)^{2} - \log y + \log y$$

$$\Rightarrow \log(y + y)^{2} - \log y + \log y$$

$$\Rightarrow \log(y + y)^{2} - \log(y + y)^{2} - \log(y + y)$$

$$= \log(y + y)^{2} - \log$$

Logarithm

GBC>>

13. Log (a) I 14. If lo	$\log\left(\frac{p^2}{qr}\right) + \log\left(\frac{q^2}{pr}\right) + \log \log \log qr$	$\left(\frac{r^2}{pq}\right)$ is: (b) 0 x, then the value of	(c) 1 of log ₁₀ 15 is:	June 2022 (d) None Dec 2022
(a) >	x - y + 1	(b) $x + y + 1$	(c) $x - y - 1$	(d) $y - x + 1$
		E	xchange	
15. I	f $log_{10000} x = -\frac{1}{4}$, the	en x is given by :		: Feb-2007
(a) 1/100	(b) 1/10	(c) 1/20	(b) None of these
	Solution: log_{10}	$x = -\frac{1}{4}$		
	$\Rightarrow x = 1000^{-1/4}$	$\Rightarrow x = \frac{1}{(10000)}$	$\frac{1}{10^{\frac{1}{4}}} = \frac{1}{10^{\frac{4}{4}}} \qquad \Longrightarrow x =$	$\frac{1}{10}$ =10%
16. I	f $\log_x y = 100$ and $\log_x y = 100$	$g_2 x = 10$, then the	value of 'y' is :	: June-2012
6	a) 2^{10}	(b) 2^{100}	(c) $2^{1,000}$	(d) $2^{10,000}$
×.	Solution:	$\log_{x} y = 100$	$\log_2 x=10$	(4) -
		$y = x^{100}$	x=2 ¹⁰	
		$=(2^{10})^{10}$		
17 T	for los 12 m los	=21000	2C there ever $+1$. June 2014
17. I a	$1 x = 10g_{24} 12, y = 10g_{36}$ () 2xy Solution: $x = log_{24}^{12}$	b) $2zx$ ² , $y = \log_{36}^{24}$, $z = \log_{46}^{24}$	c) $2yz$: June-2014 d) 2
	\Rightarrow xyz+1 $\Rightarrow \frac{h}{h}$	$\frac{\log 12}{\log 24} \times \frac{\log 24}{\log 36} \times \frac{\log 24}{\log 36}$	$\frac{g36}{g48} + 1 \implies \frac{\log 12}{\log 48} + 1$	$\Rightarrow \frac{\log 12 + \log 48}{\log 48} \Rightarrow $
	$\frac{\log 576}{\log 48} \Rightarrow \frac{\log 576}{\log 48}$	$\frac{g}{g}\frac{242}{g}\frac{3}{48}$		
	$\Rightarrow_2 \frac{\log 24}{\log 48}$	$\Rightarrow_2 \frac{\log 24}{\log 36} \frac{\log}{\log 36}$	$\frac{36}{48} \Rightarrow_{2 \log_{36}^{24} \log_{44}}$	$_{3^{36}} \implies_{X y z}$
18. it	$f \log_{q} \sqrt{3} - 1/6$, find t a) 9	he value of Q (b) 81	(c) 27	Non – 2020 (d) 3
19. I	$f \log_a(ab) = x$, then $\log_a(ab) = x$	g_b (ab) is		Jan – 2021
(a) 1/x	(b) $\frac{x}{x+1}$	(c) $\frac{x}{x-1}$	(d) None of these
20. L	$\log\sqrt{3} = 6$ base a, then	'a' will be:		June 2022
	(a) $3^{1/12}$	(b) 36	(c) 15	(d) 1
		Ν	fany log	
21. F	Find the value of log ₄ 9	$. \log_3 2 =$	_	Dec-2017
()	a) 3	(b) 9	(c) 2	(d) 1
22. l	$0g_2 log_2 log_2 16 = ?$			Nov-2018

22. $log_2log_2log_216 = ?$ Nov-2018(a) 0(b) 3(c) 1**23.** $Log_3{}^4$. $Log_4{}^5$. $Log_5{}^6$. $Log_6{}^7$. $Log_7{}^8$. $Log_8{}^9$ equal to:Dec 2022(a) 3(b) 2(c) 1(d) 0

Base Change

24. Find the logarit	hm of $\frac{1}{64}$ to the base 4 is:		Dec 2018
(a) 2	(b) -2	(c) – 3	(d) 3

Logarithm

GBC»

25.
$$\frac{1}{\log_{ga}(abc)} + \frac{1}{\log_{ga}(abc)} + \frac{1}{\log_{ga}(abc)} + \frac{1}{\log_{ga}(abc)} = \frac{1}{\log_{gabc}} + \frac{1}{\log_{gabc}} \frac{1}{2} + \frac{1}{\log_{gabc}} + \frac{1}{2} + \frac{1}{\log_{gabc}} + \frac{$$

32. The value of the expression :
$$a^{logab.logs}_{i}^{logat}$$

37. Given that $\log_{10} x=m+n-1$ and $\log_{10} y=m-n$, the value of $\log_{10}(\frac{100x}{y^2})$ expressed in term of m and n is: June 2023 (a)1-m+3n(a)1-m+3n(a)1-m+3n(a)1-m+3n**Answer**: (a) Given $\log_{10} x = m + n - 1$ and $\log_{10} y = m - n$ then $\log_{10}\left(\frac{100x}{y^2}\right) = \log_{10} 100x - \log_{10} y^2$ $= \log_{10} 100 + \log_{10} x - 2 \log_{10} y$ $= 2 + \log_{10} x - 2 \log_{10} y$ = 2 + m + n - 1 - 2 (m - n)= 2 + m + n - 1 - 2m + 2n= 1 - m + 3n**38.** The value of $\{\log_6 \{3 \log_{10} 100\}\}$: June 2023 (c)10 (d)100 (a)1 (b)2 Answer: (a) $[\log_6 \{3\log_{10} 100\}] = \log_6 \{3\log_{10} 10^2\}$ $= \log_6 \{3 \times 2 \log_{10} 10\}$ $= \log_6 \{6 \times 1\}$ $= \log_6 6$ = 1

									Ansv	ver K	ey								
1.	-	2.	a	3.	a	4.	b	5.	a	6.	d	7.	a	8.	a	9.	b	10.	b
11.	b	12.	d	13.	b	14.	a	15.	b	16.	с	17.	с	18.	с	19.	с	20.	a
21.	-	22.	с	23.	b	24.	с	25.	с	26.	-	27.	b	28.	-	29.	b	30.	с
31.	a	32.	a	33.	с	34.	с	35.	a	36.	a	37.	a	38.	a				

Quadratic Equations

GBC>>>

CHAPTER QUADRATIC EQUATIONS

BASIC

What will be the value of k, if the roots of the equation $(k - 4)x^2 - 2kx + (k + 5) = 0$ are equal 6. **Dec 2022** (a) 18 (b) 20 (c) 19 (d) 21 Solution: Given, Q.E $(K-4)x^2 - 2kx + (k+5) = 0$ Computing from $ax^2 + bx + c=0$ We get a = (k-4), b = -2k, c = (k+5)If roots of Q.E. are equal Then D=0 $B^{2}-4ac = 0$ $(-2k)^2 - 4(k-4)(k+5) = 0$ $4k^2-4(k^2+5k-4k-20)=0$ $4k^2-4k^2-4k+80=0$ 4k=80 $K = \frac{80}{4} = 20$ The difference between the roots of the equation $x^2 - 7x - 9 = 0$ is: **Dec-2017** 8. (b) $\sqrt{85}$ (d) $2\sqrt{85}$ (c) 9 (a) 7 Solution: If a,β are the roots of Q.E $X^{2}-7x-9=0$ Computing from ax²+bx+c=0 We get a=1,b=-7,c=-9 Then $a+\beta = \frac{-b}{a} = \frac{-(-7)}{1} = 7$ a. $\beta = \frac{c}{a} = \frac{-9}{1} = -9$ a- $\beta = \sqrt{(a+\beta)^2 - 4a\beta}$ $=\sqrt{(7)^2}-4\times(-9)$ $=\sqrt{49+36}$ $=\sqrt{85}$ Find the value of K in $3x^2 - 2kx + 5 = 0$ Nov-2019 9. if x = 2(a) 17/4 (b) -7/14 (c) 4/17 (d) -4/17. Solution: $3x^2-2kx+5=0$ {given equation} as it is given x=2: then put in place of x="2" $3 \times 4 - 2k(2) + 5 = 0$ 12-4k+5=0-4k=-12-5 -4k=-17 $k = \frac{17}{4}$

5.1

GBC>>>

10. If $2x^2 - (a+6) 2x + 12a - 0$, then the roots are: **Nov – 2020**

(a) 6 and a (b) 4 and a^2 (c) 3 and 2a (d) 6 and 3a Solution: Given Q.E. $2x^2-(a+6)2x+12a=0$ 2x(x-a)-12(x-a)=0 (x-a)2x-12)=0If x-a=0 if 2x-12=0 x=a 2x=12x=6

EQUATION UPTO INFINITY

24. If $b^2 - 4ac$ is a perfect square but not equal to zero than the roots are : Dec - 2013

(a) Real and Equal

(b) Real, Irrational and Equal

(c) Real, Rational and Unequal

(d) Imaginary.

Solution:

If b^2 -4ac $\neq 0$ and have perfect square i.e. D>0 and have perfect square So, Roots of Q.E are real unequal and Rational

ROOTS GIVEN FORM EQUATION

First kind Sum of Roots and Product of Roots

Then use $x^2 - (sum of roots) x + Product of roots = 0$

33. If and $\alpha + \beta = -2$ and $\alpha \beta = -3$, then α, β are the roots of the equation, which is : Dec-2015, May 2018

(a) $x^2 - 2x - 3 = 0$ (b) $x^2 + 2x - 3 = 0$ (c) $x^2 + 2x + 3 = 0$ (d) $x^2 - 2x + 3 = 0$ Solution: If $a+\beta=-2$ Q.E. IS $x^2-(a+\beta)x+a.\beta=0$ $x^2-(-2)x+(-3)=0$ $x^2+2x-3=0$

\propto, β Question

36. Roots of equation $2x^2 + 3x + 7 = 0$ are α and β . The value of $\alpha\beta^{-1} + \beta\alpha^{-1}$ is **Dec - 2012**

(a) 2 (b) 3/7 (c) 7/2 (d) -19/14Given equation $2x^2+3x+7=0$ On comparing with $ax^2+bx+c=0$ We get , a=2,b=3,c=7If a,β are the roots of Q.E then $a+\beta=\frac{-b}{a}=\frac{-3}{2}$ $a,\beta=\frac{c}{a}=\frac{7}{2}$ $a\beta^{-1}+\beta a^{-1}=\frac{a}{\beta}+\frac{\beta}{a}=\frac{a^2+\beta^2}{a\beta}=\frac{(a+\beta)^2-2a\beta}{a\beta}$ $=\frac{\left(\frac{-3}{2}\right)^2-2\left(\frac{7}{2}\right)}{\frac{7}{2}}$ $=\frac{-19}{14}$ 2018

GBC>>

37. If α and β be the roots of the quadratic equation $2x^2 - 4x = 1$, the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is _. June-2015

(a) -11 (b) 22 (c) -22 (d) 11 Given Q.E. $2x^2-4x=1$ $2x^2-4x=1=0$ Comparing from $ax^2+bx+c=0$ we get a=2,b=-4,c=-1 $a+\beta=\frac{-b}{a}=\frac{-(-4)}{2}=2$ $a,\beta=\frac{c}{a}=\frac{-1}{2}$ $\frac{a^2}{\beta}+\frac{\beta^2}{a}=\frac{a^3+\beta^2}{a\beta}$ $=\frac{(a+\beta)^3-3a\beta(a+\beta)}{a\beta}$ $=\frac{(2)^3-3\chi(\frac{-1}{2})(2)}{(-\frac{1}{2})}$ $=\frac{8+3}{(-\frac{1}{2})}=\frac{11}{-1/2}=-11\times 2=-22$

38. If α , β are the roots of the equation $x^2 + x + 5 = 0$ then $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is equal to: June-2017, May

(a) 16/5 (b) 2 (c) 3 (d) 14/5 Solution: Given Q.E. $x^2+x+5=0$ a=1,b=1,c=5if $a \& \beta$ are the root of Q.E. $a+\beta=\frac{-b}{a}=\frac{-1}{1}=-1$ $a.\beta=\frac{c}{a}=\frac{5}{1}=5$ $\frac{a^2}{\beta} + \frac{\beta^2}{a}=\frac{a^3+\beta^3}{a\beta}$ $=\frac{(a+\beta)^3-3a\beta(a+b)}{a\beta}$ $=\frac{(-1)^3-3x5x(-1)}{5}$ $=\frac{-1+15}{5}$ $=\frac{14}{5}$ **39.** Let α and β be roots of equation $x^2 - 7x + 12 = 0$. Then the value of $\left(\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}\right)$ will be **Nov-**

2018

(a) $\frac{7}{12} + \frac{12}{7}$ (b) $\frac{49}{144} + \frac{144}{49}$ (c) $\frac{91}{12}$ (d) None of the above Solution: If $a + \beta$ are the roots of Q.E. $x^2 + 7x + 12 = 0$ then $a + \beta = \frac{-b}{-a} = \frac{-7}{1} = -7$ $a \times \beta = \frac{c}{a} = \frac{12}{1} = 12$ $\frac{a^2}{\beta} + \frac{\beta^2}{a} = \frac{a^3 + \beta^3}{a\beta}$ $= \frac{(a+\beta)^3 - 3a\beta(a+\beta)}{a\beta}$ $= \frac{(-7)^3 - 3x12\times(-7)}{12}$ $= \frac{-343 + 252}{12}$ $= \frac{-91}{12}$ **40.** If roots of equation $x^2 + x + r = 0$ are ' \propto ' and ' β ' and $\alpha^3 + \beta^3 = -6$. Find the value 'r' ? June-2011

(a) -5/3 (b) 7/3 (c) -4/3 (d) 1 Given : 'a' and ' β ' are roots of $x^2+x+r=0$ Here a=1, b=1 and c=r \therefore Sum of roots : $a+\beta = \frac{-b}{a} = -1$ and product of roots : $a-\beta = \frac{c}{a} = r$ also, $\therefore a^3 + \beta^3 = (a+\beta)^3 - 3a\beta(a+\beta)$ On putting the values, $-6 = (-1)^3 - 3r(-1)$ Or r=-5/3

RELATION BETWEEN ROOTS GIVEN

42. Positive value of 'k' for which the roots of equation $12x^2 + kx + 5 = 0$ are in ratio 3:2, is **Dec-2010**

(a) 5/12 (b) 12/5 (c) $\frac{5\sqrt{10}}{2}$ (d) $5\sqrt{10}$ $12x^2 + kx + 5 = 0$ Here, a = 12; b = k; c = 5Let the roots be 3y and 2y respectively. We know that: Sum of roots $= \frac{-b}{a}$ $\therefore 3y + 2y = \frac{-k}{12}$ $\rightarrow 5y = \frac{-k}{12}$ $\rightarrow y = \frac{-k}{125}$ GBC>>

.

$$\rightarrow y = \frac{-\kappa}{60} - eq.(1)$$

Also, we know that:
Product of roots $= \frac{c}{a}$
$$\rightarrow 3y \times 2y = \frac{5}{12}$$

$$\rightarrow 6y^2 = \frac{5}{12}$$

$$\rightarrow y^2 = \frac{5}{12 \times 6}$$

$$\rightarrow y^2 = \frac{5}{72} - eq.(2)$$

Putting the value of $y = \frac{-k}{60}$ in the above equation:

$$\left(-\frac{k}{60}\right)^2 = \frac{5}{72}$$

$$\rightarrow \frac{k^2}{3600} = \frac{5}{72}$$

$$\rightarrow k^2 = \frac{5 \times 3,600}{72}$$

$$\rightarrow k = \sqrt{\frac{5 \times 3,600}{72}}$$

$$\rightarrow k = 15.811$$

On going through the option on calculator, we find that $5\sqrt{10}\beta$

=15.811. Therefore, answer is option (d) $\rightarrow 5\sqrt{10}$

43. If one root of Equation $px^2 + qx + r = 0$ is r then other root of the Equation will be : Dec-2011

(a) 1/q (b) 1/r (c) 1/p (d) 1/p+qSolution: The roots of the equation $Px^2+qx + r = 0$ are a & β Given a = r given, Sum of roots $a + \beta = \frac{-b}{a}$ $r + \beta = \frac{-q}{p}$(1) Product of roots $a.\beta = \frac{c}{a}$ $r.p = \frac{r}{p}$

44. If the ratio of the roots of the Equation $4x^2 - 6x + p = 0$ is 1:2 then the value if p is Dec-2011

(a) 1 (b) 2 (c) -2 (d) -1Solution: Let the roots of Q.E $4x^2-6x + p=0$ is a,β Here a=4, b=-6,c=p $a:\beta=1:2$ $a=k, \beta=2k$ $a+\beta=\frac{-b}{a}$

5.6

 $k+2k=-\left(\frac{-6}{4}\right)$ $3k = \frac{3}{2}$ $k = \frac{1}{2}^{2}$(1) and $a.\beta = \frac{c}{a}$ k.2k= $\frac{p}{4}$ $2k^{2} = \frac{p}{4}$ K = 1/2 $\therefore 2. \left(\frac{1}{2}\right)^{2} = \frac{p}{4}$ $P = 2 \times \frac{1}{4} \times 4$ P = 2The last set of the set of t 45. Find the condition that one roots is double the other of $ax^2 + bx + c = 0$ June-2019 (b) $b^2 = 3ac$ (c) $2b^2 = 9ac$ (d) $2b^2 > 9ac$ (a) $2b^2 = 3ac$ Here, given Q.C. IS $ax^2 + bx + c = 0$ given, $\beta = 2a$ n=2then the condition is $\frac{b^2}{ac} = \frac{(n+1)^2}{n}$ $\frac{b^2}{ac} = \frac{(2+1)^2}{2}$ $\frac{b^2}{ac} = \frac{9}{2} \rightarrow 2b^2 = 9ac$ 47. If difference between the roots of the equation $x^2 - kx + 8 = 0$ is 4, then the value of k is : **June-2016** (d) $\pm 4\sqrt{3}$ (c) $\pm 8\sqrt{3}$ (a) 0 (b) ± 4 Solution: Given Q.E $X^{2}-kx + 8=0$ If a and $\beta = -b/a = \frac{(-k)}{1} = k$ a+ $\beta = k$ ------(1) a. $\beta = \frac{c}{2}$ a. $\beta = \frac{a}{3}$ a. $\beta = \frac{1}{1}$ a. $\beta = 8$ -----(2) Given a- β =4-----(3) Adding (1) & (3) $\frac{a+\beta=k}{a-\beta=4}$ 2a=k+4 $a = \frac{(k+4)}{2}$ in eg. (1) $\frac{k+4}{2} + \beta = k$ $\beta = k - \frac{(k+4)}{2}$ $\beta = \frac{2k - k - 4}{2}$ $\beta = \frac{k-4}{2}$

Putting the value of a and β in equation (2) $\left(\frac{k+4}{2}\right)\left(\frac{k-4}{2}\right) = 8$

(k+4) (k-4) = 8×4 $k^{2}-16=32$ $k^{2}=48$ $k = \pm \sqrt{48}$ $k = \pm 4\sqrt{3}$ 50. Roots of the equation $3x^{2} - 14x + k = 0$ will be reciprocal of each other if: June - 2010 (a) k = -3 (b) k = 0 (c) k = 3 (d) k = 14. Since roots are reciprocal of each other, Roots of equation will be ∞ , $\frac{1}{\infty}$ Product of roots will be $1=+\frac{c}{a}$ $\frac{k}{3}=1$ $\therefore k=3$

51. The value of p for which the difference between the root of equation $x^2 + px + 8 = 0$ is 2 Jan – 2021

(a) ± 2 (b) ± 4 (c) ± 6 (d) ± 8 Solution: If a and β are roots of Q.E. $x^2 + px + 8 = 0$ then $a + \beta = \frac{-b}{a} = \frac{-p}{1} = -p$ $a.\beta = \frac{c}{a} = \frac{8}{1} = 8$ and given $a-\beta=2$ we know that $(a+\beta)^2 = (a+\beta)^2 + 4a\beta$

 $\begin{array}{ll} (a+\beta)^2 &= 2^2 + 4 \times 8 \\ (a+\beta)^2 &= 4 + 32 \\ (a+\beta)^2 &= 36 \\ a+\beta &= \pm \sqrt{36} \\ a+\beta &= \pm 6 \end{array}$

52. If one root is half of the other of a quadratic equation and the difference in roots is a, then the equation is **Dec 2021**

(a) $x^2 + ax + 2a^2 = 0$ (b) $x^2 - 3ax - 2a^2 = 0$ (c) $x^2 - 3ax + 2a^2 = 0$ (d) $x^2 + 3ax - 2a^2 = 0$ Let one root be a, and another root be β .

Since one root is half of the other root, we have $\beta = \frac{1}{2} \times a = \frac{a}{2}$

Since the difference of the roots is a, we have:

$$a - \frac{x}{2} = a$$

$$\rightarrow \frac{2a-a}{2} = a$$

$$\rightarrow \frac{a}{2} = a$$

$$\rightarrow a = 2a$$
Therefore, $\beta = \frac{a}{2} = \frac{2a}{2} = a$
Sum of roots = 2a+a=3a
Product of roots = 2a × a = 2a²
When the roots are known, the equation is given by:
 x^{2} -(sum of roots)x + product of roots =0
therefore, the equation is:

 $x^2 - 3ax + 2a^2 = 0$

54. If the second root of the given equation is reciprocal of first root then value of 'k' in the equation $5x^2 - 13x + k = 0$ **June 2022** (a) 3 (b) 2(c) 1 (d) 5Solution: $5x^2-13x+k=0$ given q.e on comparing $ax^2+bx+c=0$ a=5,b=-13,c=k we get, if one root is reciprocal to other roots then c=a k=555. If the roots of the equation $x^2 - px + q = 0$ are in the ratio 2 : 3, then: Dec 2022 (a) $p^2 = 25q$ (b) $p^2 = 6q$ (c) $6p^3 = 5q$ (d) $6p^2 = 25q$ Solution: If a & β are the roots of Q.E. $x^2-px+q=0$ given, a: $\beta = 2:3$ let a=2k, $\beta=3k$ and a=1, b=-p,c=qwe know that: $a + \beta = \frac{-b}{-b}$ $2k + 3k = \frac{-(-p)}{2}$ 5k=p $K = \frac{p}{5}$ -----(i) And $a.\beta = \frac{c}{a}$ $2k.3k = \frac{q}{1}$ $6k^2 = q$ $6\left(\frac{p}{5}\right)^2 = q[\text{putting } k = p/5 \text{ from eq.}(1)]$ $6\frac{p^2}{25} = q$ $6p^2 = 25q$

NUMBER SYSTEM (FROM HERE NOT IN CMA)

56. The sum of two numbers is 13 and the sum of their squares is 85 Find the numbers. (Dec 2017)

(a) 7, 6 (b) 8, 10 (c) 5, 4 (d) None of these Solution: Let two numbers are x & y Given x+y = 13 -----(1) $x^2 + y^2 = 85$ -----(2) from equation (1)x+y=13putting y=13-x in equation (2) $x^{2} + (13-x)^{2} = 85$ $x^2 + 169 + x^2 - 26x = 85$ $x^{2}+26x+169-85=0$ $x^{2}+2x+84=0$ $2(x^2-13x+42)=0$ $x^{2}+13x+42=0$ x^{2} + 7x-6x + 42 = 0 x(x-7)-6(x-7)=0(x-7)(x-6)=0If x-7=0 if x-6=0 X=7 x-6 Putting x=7 in equation (1) we get y=6

GBC>>>

Putting x=6 in equation (2) we get x=7

62. If the square of a number exceeds twice of the number by 15. Then number that satisfies the condition is **Dec 2021**

(a) -5 (b) 3 (c) 5 (d) 15 Solution: Let the number be x. As per the question, $x^2-2x=15$ Now, try the options. Option(a) \rightarrow -5 LHS = (-5)^2-2(-5)=25+10=35 \neq RHS Option (b) \rightarrow 3 LHS = (3)^2-2(3)=9-6=3 \neq RHS Option (C) \rightarrow 5 LHS=(5)^2-2(5)=25-10=15=RHS Therefore ,option (c) is the answer

63. The sum of square of any real positive quantities and its reciprocal is never less than: July –
 2021

(a) 4 (b) 1 (c) 3 (d) 4 "Real positively quantity" ranges from 0 to infinity Let the number be 0.1 Now, $0.1^2 + \frac{1}{0.1} = 10.01$ Let the number be 0.5. Now, $0.5^2 + \frac{1}{0.5} = 2.25$ Let the number be 1. Now, $1^2 + \frac{1}{1} = 1 + 1 = 2$ Let the number be 2 Now. $2^2 + \frac{1}{2} = 4 + \frac{1}{2} = 4.5$ Let the number be 3. Now, $3^2 + \frac{1}{3} = 9 + \frac{1}{3} = 9.33$ Clearly, the sum will never be less than 2.

MISCELLANEOUS QUESTIONS

77. If $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0$ then the value of $(\frac{a+b+c}{3})^3$ is equal to : June 2023 (a)abc (b)9abc (c)1/abc(d)1/9abc**78.** If α and β are the roots of Quadratic equation $x^2 - 2 \times -3 = 0$ then the equation whose roots are $\alpha+\beta$ and $\alpha-\beta$ is : **June 2023** (b) $x^2 - 6x + 8 = 0$ (c) $x^2+6x+8=0$ (d) $x^{2}+6x-8=0$ (a) $x^2-6x-8=0$ Answer : (**b**) Given Q.E. $X^2 - 2X - 3 = 0$ $X^2 - 3X + X - 3 = 0$ X(X-3) + 1(X-3) = 0(X-3)(X+1) = 0If X-3=0 and If X+1=0X=3 X = -1Here $\alpha = 3$, and $\beta = -1$ New Roots are $(\alpha + \beta) \& (\alpha - \beta)$ = [3+(-1)]& [3–(–1)] =(3-1)& (3+1) = 2& 4 Sum of Roots (S) = 2 + 4 = 6Product of Roots (P) = $2 \times 4 = 8$

GBC>>>

Q is given by $x^2 - 5x + p = 0$ $x^2 - 6x + 8 = 0$ **79.** If α and β are roots of the equation $x^2 - (n^2 + 1) \times + \frac{1}{2}(n^4 + n^2 + 1) = 0$. Then the value of $\alpha^2 + \beta^2$ is **June 2023** $(c)2n^{2}$ (a) 2n (b) n^2 $(d)n^3$ Answer: (b) Given, Q.E $x^{2} - (n^{2} + 1)x + \frac{1}{2}(n^{4} + n^{2} + 1) = 0$ On Comparing $ax^2 + bx + c = 0$ We get a = 1, $b = -(n^2 + 1)$, $c = \frac{1}{2}(n^4 + n^2 + 1)$ If $\alpha \& \beta$ are the Root of O.E $\alpha + \beta = \frac{-b}{a} = \left|\frac{-(n^2+1)}{1}\right| = (n^2+1)$ $\alpha \cdot \beta = \frac{c}{a} = \frac{1}{2} \left| \frac{(n^4 + n^2 + 1)}{1} \right| = \frac{1}{2} (n^4 + n^2 + 1)$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $= (n^{2} + 1^{2}) - 2 \times \frac{1}{2}(n^{4} + n^{2} + 1)$ = $n^{4} + 1 + 2n^{2} - n^{4} - n^{2} - 1$ = n^{2} The solution of cubic equation $x^3-23x^2+142x-120=0$ is given by the triplet : dec 2023 80. (a) (1,10,12)(b) (1,-10,12) (c)(1,-10,-12)(d)(1,10,-12)Answer: (a) Given cubic equation $x^3 - 23x^3 + 142x - 120 = 0$ Option (a) (1,10,12) satisfied the equations So, option (a) is correct. (By Hits/ Trials) 81. The roots of the equation $x^3 + x^2 - x - 1 = 0$ are : dec 2023 (a) x=1, x=-1, x=-1(b)x=1, x=1, x=-1(c)x=-1, x=-1, x=-1(d)x=1, x=1, x=1**Answer**: (a) Given equation, $x^3 + x^2 - x - 1 = 0$ $x^{2}(x+1) - 1(x+1) = 0$ $(x+1)(x^2-1)=0$ (x+1)(x+1)(x-1) = 0If x+1 = 0. If x+1=0, If x-1=0x = -1, x = -1, x = 1The roots of given equation are : 1, -1, -182. If α and β are the roots of the equation $x^2-4x+1=0$, then value of $\alpha^3 + \beta^3$ will be : dec 2023 (a) -76 (b) 76 (c) -52 (d) 52 Answer: (d) Given, q.e $x^2 - 4x + 1 = 0$ comparing from $ax^2+bx+c=0$ we get, a = 1, b = -4, c = 1if $\alpha \& \beta$ are the roots of q.e $\alpha + \beta = \frac{-b}{a} = -\frac{(-4)}{1} = 4$ $\alpha - \beta = \frac{c}{a} = \frac{1}{1} = 1$ $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ $= (4)^3 - 3 \times 4 \times 1$

Quadratic Equations

= 64 - 12 = 52

								A	nsw	er Key	y								
1.	-	2.	b	3.	a	4.	d	5.	a	6.	b	7.	-	8.	b	9.	a	10.	a
11.	b	12.	d	13.	a	14.	a	15.	d	16.	b	17.	b	18.	с	19.	с	20.	a
21.	b	22.	b	23.	с	24.	с	25.	-	26.	a	27.	с	28.	b	29.	d	30.	b
31.	a	32.	a	33.	b	34.	b	35.	-	36.	d	37.	с	38.	d	39.	с	40.	a
41.	d	42.	d	43.	с	44.	b	45.	с	46.	d	47.	d	48.	с	49.	a	50.	с
51.	с	52.	с	53.	с	54.	d	55.	d	56.	a	57.	a	58.	b	59.	a	60.	-
61.	a	62.	с	63.	b	64.	с	65.	с	66.	с	67.	с	68.	a	69.	b	70.	а
71.	с	72.	с	73.	c	74.	c	75.	b	76.	с	77.							

TVM	App	lications
-----	-----	-----------

CHAPTER TIME VALUE OF MONEY - APPLICATIONS

GBC>>>

PAST YEAR QUESTIONS

	SIMPLE	INTERI	EST BASIC	LS				
₹ 8,000 becom	nes ₹ 10,000 in two y	ears at simple	interest. The amo	unt that will become ₹ 6,87				
in 3 years at th	he same rate of intere	est is :		Nov-2006				
(a) ₹ 4,850	(b) ₹ 5	,000 :	(c) ₹ 5,500	(d) ₹ 5,275				
Soluti	on:							
Simple	e Interest = $P \times n \times r$							
	$2,000 = 8000 \times 2 \times$	r	r = 0.1	25 = 12.5% simple				
	Let required princip	al is x	Amour	$nt = principal + P \times n \times r$				
	$6875 = \mathbf{x} + \mathbf{x} \times 3 \times 0.$	125	Solvin	g = x = 5,000				
A certain sum	of money amounts to	o ₹ 6,300 in tw	o years and ₹ 7,87	5 in three years nine month				
at simple inter	rest. Find the rate of	interest per an	num :	May-200				
(a) 20%	(b) 18 ^o	%	(c) 15%	(d) 10%				
Solution :								
In 2 years amo	punt = 6300							
In 3.75 years	Amount = 7875							
		Amount	Princ	$ripal + P \times n \times r$				
	In 2 Years	6,300	= $p + p$	\times n \times r				
	In 5.75 Years	1875	= p + p	×1./5 × r				
$\mathbf{Dr} = 0$	00	1575	1.75	×I				
FI = 9	500	$-\mathbf{P} + 000 \times 2$	D = 4500	P - 200/				
$0300 = \Gamma + \Gamma$ What is the re-	$\times 1 \times 2$ 0500	$= \mathbf{r} + 900 \times 2$	$\Gamma = 4300$	$\mathbf{K} = 2070$				
	te of shiple interest i		ney amounts to \checkmark	2,764 III 4 years allu < 2,000				
in 3 years ?				June - 200				
(a) 1% p.a.	(b) 4%	p.a.	(c) 5% p.a.	(d) 8% p.a.				
Answer:	×R×T							
(b) S.I. $=$ $\frac{1}{2}$	100							
$\mathbf{A} = \mathbf{P} + \mathbf{S}$.I							
$\mathbf{A} = \mathbf{P} + \mathbf{\underline{P}}$	<u>x R x T</u>							
	100							
A = P(1 +	$\frac{\mathrm{RI}}{\mathrm{100}}$							
$\Delta - P(1 \downarrow$	$\frac{4R}{4R}$							
M = I(I)	100 ⁷							
∴2784 = P	$P(1 + \frac{m}{100})$							
2,78,400 =	= 100P +4 PR							
And, 2,68	$8 = P(1 + \frac{3R}{400}) \dots$	(1)						
2.68.000 =	= 100 P + 3 PR	(2)						
Subtractin	g(2) from (1), we ge	et						
2,78,400 =	= 100 P +4 PR							
2,68,800 = 100 P + 3PR								
(-)	(-) (-)							
9,600 =	PR							
Substituti	ng $PR = 9,600$ in (1)							
2,78,400 =	= 100 P + 4x 9600							
2 78 400 =	= 100P + 38400							

2,78,000 - 38,400 = 100 P2,40,000 = 100 P P = 2400Now, PR = 9600 & P = 2400 2400 R = 9600 $R = \frac{96000}{2400} = 4 \% \text{ p.a.}$ In how much time would the simple interest on a certain sum be 0.125 times the principal at 4. 10% per annum? **June-2008** (b) $1\frac{3}{4}$ years (c) $2\frac{1}{4}$ years (d) $2\frac{3}{4}$ years (a) $1\frac{1}{4}$ years **Solution :** $S.I = P \times t \times r$ $0.125 \times P = P \times t \times 0.10 t = 1.25$ 5. The S.I. on a sum of money is $\frac{4}{9}$ of the principal and the no. of years is equal to the rate of interest per annum. Find the rate of interest per annum ? **June-2012** (a) 5% (b) 20/3%(c) 22/7% (d) 6% **Solution :** Simple Interest = $\frac{4}{9} \times principal$ P × t × $\frac{r}{100} = \frac{4}{9} \times P$ here t = r r × $\frac{r}{100} = \frac{4}{9}$ r² = $\frac{400}{9}$ r = $\frac{20}{3}$ % A sum of money doubles itself in 8 years at simple interest. The number of years it would triple 6. itself is June-2015 a) 20 years b) 12 years c) 16 years d) None of these 7. In how many years will a sum of money become four times at 12% p.a. simple interest? Dec-2015 a) 18 years b) 21 years c) 25 years d) 28 years Answer: (C)Let Principal P = 100A = 400S.I. = A - P=400-100= 300 R = 12%, T = ? $\mathbf{S.I.} = \frac{\mathbf{PRT}}{\mathbf{100}}$ $=\frac{\frac{100}{\text{S.I.}\times100}}{\text{PR}}=\frac{300\times100}{100}\times12}=25 \text{ years}$ Т 8. A person lends ₹6,000 for 4 years and ₹8,000 for 3 years at simple interest. If he gets ₹2,400 as total interest, the rate of interest is **Dec-2016** (a) 5% (b) 4% (c) 6% (d) 7% Answer: $P_1 Rs. 6,000 P_2 Rs, 8,000$, Total S.I. = 2,400 (a) Given $R_1 = R\%$ $R_2 = R\%$ $T_1 = 4$ years, $T_2 = 3$ years Total Interest = $(S.I)_{1+}(S.I)_2$ $2,400 = \frac{P_{1R_{1T_{1}}}}{100} + \frac{P_{2R_{2T_{2}}}}{100}$ $2,400 = \frac{6,000 \times \text{Rx4}}{100} + \frac{100}{100}$ 8,000 x R x 3 100 100 2,400 = 240 R + 240 R $2,400 = 480R \implies R = \frac{2,400}{480} = 5\%$

9. A certain sum of money Q was deposited for 5 year and 4 months at 4.5% simple interest and amounted to ₹248, then the value of Q is Nov-2018 a) ₹200 b) ₹ 210 c) ₹220 d) ₹240 **Answer**: Given Principal (P) = X (a) R =4.5%Т = 5 years 4 month =5 years $+\frac{4}{12}$ years $= 5 \text{ years} + \frac{1}{3} \text{ years}$ $= 5\frac{1}{3} \text{ years}$ $= \frac{16}{3} \text{ years}$ Amount after T years A = P + S.I $A = P + \frac{PRT}{100}$ 15 A =X+ $\frac{x \times 45 \times 16}{x \times 45 \times 16}$ 1000×3 $248 = X + \frac{240x}{240x}$ 1000 248 = X + $8 = X + \frac{100}{100x + 24x}$ 124 x = 24,800 $X = \frac{24800}{124} = 200$ 10. The certain sum of money became ₹692/- in 2 yrs and ₹800/- in 5 years then the principal June-2019 amount is (a) ₹ 520 (b) ₹ 620 (c) ₹ 720 (d) ₹ 820 **Answer**: (b) $\ddot{}$ The amount of any sum in 5 years = Rs. 800 The amount of same sum in 2 years = Rs. 692S.I of 3 years = 108 \therefore S.I of 1 year = $\frac{108}{3}$ = 36 \therefore S.I of 2 years = $36 \times 2 = 72$ For 2 years Amount (A) = Rs. 692S.I = Rs. 72P = A - S.I= Rs. 692 - 72 = Rs. 620 11. A sum of money amount to ₹ 6,200 in 2 years and ₹ 7,400 in 3 years as per S.I. then the **June-2019** principal is (a) ₹ 3,000 (b) ₹ 3,500 (c) ₹ 3,800 (d) None Answer:

(c) The amount of any sum in 3 years = Rs. 7,400

8.4

The amount of same sum in 2 years = Rs. 6,200 S.I of 1 year = Rs. 1,200S.I of 2 years = Rs. $1,200 \times 2$ = Rs. 2,400 For 2 years Amount (A) = Rs. 6,200S.I = Rs. 2,400P = A - S.I= Rs. 6,200 - 2,400 = Rs. 3.800 P = ₹ 5,000 R = 15% T = $4^{1/2}$ using $I = \frac{PTR}{100}$ then I will be 12. June-2019 (a) ₹ 3,375 (b) ₹ 3,300 (c) ₹ 3,735 (d) None **Answer:** (a) P = Rs.500, R = 15%, $T = 4\frac{1}{2}$ years $=\frac{9}{2}$ years $\mathbf{I} = \frac{P.R.T}{100} = \frac{5,000 \times 15 \times 9/2}{100}$ = Rs.3.37513. In simple interest if the principal is ₹ 2,000 and the rate and time are the roots of the equation $x^2 - 11x + 30 = 0$ then simple interest is **June-2019** (a) ₹ 500 (c) ₹ 700 (b) ₹600 (d) ₹800 **Answer:** (b) Here, principal (P) = Rs. 2,000given Equ. $x^2 - 11x + 30 = 0$ $x^2 - 6x - 5x + 30 = 0$ x(x-6) - 5(x-6) = 0(x-6)(x-5)=0If x-6 = 0 if x-5 = 0x = 6, x = 5Rate (R) = 6 %, Time (T) = 5 years $S.I = \frac{P.R.T}{100} = \frac{2000 \times 6 \times 5}{100}$ =Rs.600 A man invests ₹ 12,000 at 10% p.a. and another sum of money at 20% p.a. for one year. The 14. total investment earns at 14% p.a. simple interest the total investment is : Nov-2019

total investment earns at 14% p.a. simple interest the total investment is : Nov-20 (a) \gtrless 8,000 (b) \gtrless 20,000 (c) \gtrless 14,000 (d) \gtrless 16,000 Answer :

(b) Let the another sum of money be Rs. X

So total investment Rs. (12,000 + X) \therefore SI = $\frac{P \times R \times T}{100}$ According to ques, $\frac{12,000\times10\times1}{100} + \frac{X\times20\times1}{100} = (12,000 + X) \times \frac{14}{100} \times 1$ 1.20.000+20X = 1.68.000 + 14X6X = Rs. 48,000X = Rs. 8,000So total investment = Rs. (12,000 + X) = Rs. (12,000 + 8,000) = Rs. 20,000 SI = 0.1225 P at 10% p.a. Find time. 15. Nov 2019 (a) 1.25 years (b) 25 years (c) 25 years (d) None **Answer:** (a) We know, $SI = \frac{P \times R \times T}{100}$ Here, SI=0.125P R= 10% Put these values in the above formula $0.125 \text{ P} = \text{P} \times \frac{10}{100} \times \text{T}$ $T = \frac{0.125P \times 100}{10 \times P}$ T = 1.25 years The difference in simple interest of a sum invested of ₹ 1,500 for 3 years is ₹ 18. The difference 16. Nov-2019 in their rates is : (a) 0.4(b) 0.6 (c) 0.8(d) 0.10**Answer:** (a) Let the two rates of interest be r_1 , %, r_2 % $SI = \frac{P \times R \times T}{100}$ According to ques, $(SI)_{1-}(SI)_{2=} 18$ $1500 \times \frac{r_1}{(100)} \times 3 - 1500 \times \frac{r_2}{(100)} \times 3 = 18$ $\frac{4500}{(100)}(r_{1-r_1}) = 18$ $(r_1 - r_2) = 0.4$

So, the difference in their rates is 0.4.

17. What sum of money will produce ₹42,800 as an interest in 3 years and 3 months at 2.5% p.a. simple interest?
 (a) ₹ 3,78,000
 (b) ₹ 5,26,769
 (c) ₹ 422,000
 (d) ₹ 2,24,000

Answer:

(**b**) I = Pit

$$P = \frac{I}{it} = \frac{42,800}{0.025 \times \left[3 + \frac{3}{12}\right]}$$
= 5,26,769

18. A certain sum amounted to ₹ 575 at 5% in a time in which ₹ 750 amounted to ₹ 840 at 4%. If the rate of interest is simple, find the sum – Jan - 2021

(a) 525
(b) 550
(c) 515
(d) 500

(d) First, let's find the time in which Rs. 750 amounted to Rs. 840 at 4%

p.a. simple interest.

 $t = \frac{A - P}{Pi} = \frac{840 - 750}{750 \times 0.04} = 3$ Now, we'll find P A = P + 1A = P + PitA = P(1 + it) $P = \frac{A}{1 + it} = \frac{575}{1 + (0.05 \times 3)} = 500$

19. Two equal amounts of money an deposited in two banks each at 15% p.a. fix 3.5 year in the bank and fix 5 years in the either. The difference between the interest amount from the bank in ₹ 144. Find the sum

(a) ₹ 620 (b) ₹ 640 (c) ₹ 820 (d) ₹ 840 Answer :

 (\mathbf{b}) I = Pit

Interest from the first bank = $I_1 = P \times 0.15 \times 3.5 = 0.525P$ Interest from the second bank = $I_2 = P \times 0.15 \times 0.15 \times 5 = 0.75P$ Given : $I_2 - I_1 = 144$ 0.75 P - 0.525 P = 144 P (0.75 - 0.525) = 144 $P = \frac{144}{0.75 - 0.525} = 640$ A man invested one-third of his capital at 7% one fourth at 8% and the remainder at 10%. If

- 20. A man invested one-third of his capital at 7% one fourth at 8% and the remainder at 10%. If the annual income is ₹ 561. The capital is Jan 2021

 (a) ₹ 4,400
 (b) ₹ 5,500
 (c) ₹ 6,600
 (d) ₹ 5,800
 - (c) Let the total capital be x.

One third capital is investment at 7% p.a.

Interest from this investment = $\left(\frac{1}{3} \times X\right) \times 0.07 \times 1 = \frac{0.07X}{3}$

One fourth capital is invested at 8% p.a.

Interest from this investment= $\left(\frac{1}{4} \times X\right) \times 0.08 \times 1 = \frac{0.08X}{4}$

Remaining capital is invested at 10% p.a.

Interest from this investment:

$$\left\{ \left(1 - \frac{1}{3} - \frac{1}{4}\right) \times X \right\} \times 0.10 \times 1$$
$$= \left\{ \left(\frac{12 - 4 - 3}{12}\right) \times X \right\} \times 0.10$$
$$= \frac{5}{12}X \times 0.10 = \frac{0.5X}{12}$$

The total interest is Rs. 561.

Therefore,
$$\frac{0.07X}{3} + \frac{0.08X}{4} + \frac{0.5X}{12} = 561$$

 $(4 \times 0.07X)(3 \times 0.08X)(0.05X) = 561$

12 0.28X+0.24X+0.50X=561 × 12

1.02X=6732

$$X = \frac{6732}{1.02} = 6,600$$

Alternatively, try the options

Option(a) \rightarrow Rs. 4,400 $\left(\frac{1}{3} \times 4,400 \times 0.07 \times 1\right) + \left(\frac{1}{4} \times 4,400 \times 0.08 \times 1\right) + \left(\frac{5}{12} \times 4,400 \times 0.10 \times 1\right) = 374 \neq 561$ Option(b) \rightarrow Rs. 5,500 $\left(\frac{1}{3} \times 5,500 \times 0.07 \times 1\right) + \left(\frac{1}{4} \times 5,500 \times 0.08 \times 1\right) + \left(\frac{5}{12} \times 5,500 \times 0.10 \times 1\right) = 467.50 \neq 561$ Option(c) \rightarrow Rs. 6,600 $\left(\frac{1}{3} \times 6,600 \times 0.07 \times 1\right) + \left(\frac{1}{4} \times 6,600 \times 0.08 \times 1\right) + \left(\frac{5}{12} \times 6,600 \times 0.10 \times 1\right) = 561 = 561$

Therefore, option (c) is the answer.

A certain sum amounts to ₹ 15.748 in 3 Years at simple interest at r% p.a. The same sum amounts to ₹ 16,510 at (r + 2) % p.a. simple interest in the same time. What is the value of r? July - 2021

(a) 10% (b) 8% (c)12% (d) 6% **Answer:**

(**b**) We know that A=P(1 + it)

Therefore $15,748 = P(1+3i) \dots Eq. (1)$

Also,

16,510 = P(1 + 3(i + 0.02)[Note: We added 0.02 because we

Need to take the interest in decimal]

 \rightarrow 16,510 = P(1 + 3)(i + 0.02)

 $\rightarrow 16,510 = P(1.06 + 3) \dots Eq.(2)$ Dividing Eq. (1) by Eq. (2), we have: $\frac{15,748}{16,510} = \frac{P(1+3i)}{P(1.06+3)}$ $\rightarrow \frac{15,748}{16,510} = \frac{1+3i}{1.06+3i}$ $\rightarrow 0.9538 = \frac{1+3i}{1.06+3i}$ Now, try the options, Option (a) $\rightarrow 10\%$ RHS = $\frac{1+3(0.10)}{1.06+3(0.10)} = \frac{1.3}{1.36} = 0.9559 \neq 0.9538$ Option (b) $\rightarrow 8\%$ $\frac{1+3(0.08)}{1.06+3(0.08)} = \frac{1.24}{1.3} = 0.9538 = LHS$

Therefore, option (b) is the answer.

22. Rahul invested ₹ 70,000 in a bank at the rate of 6.5% p.a. simple interest rate. He received ₹ 85,925 after the end of term. Find out the period for which sum was invested by Rahul. Dec 2021

(a) 2 years (b) 3 years (c) 3.5 years (d) 2.5 years Answer: (c) Here, Principal (P) = 70,000 Rate (R) = 6.5% p.a. Amount (A) = 85,925, T = ? S.I. = A - P = 85,925 - 70,000 = 15,925 T = $\frac{S.I \times 100}{P \times R} = \frac{15.925 \times 1,000}{70,000 \times 6.5}$ = 3.5 year.

Answer:

(a) We know that I= Pit

Given: I=
$$\frac{P}{4}$$
; i= $\frac{R}{100}$; t=R
I= Pit
=> $\frac{P}{4}$ = P× $\frac{R}{100}$ ×R
=> $\frac{1}{4} = \frac{R^2}{100}$
=> 100= 4 R^2

$$=> R^2 = \frac{100}{4} = 25$$

 $=> R = \sqrt{25} = 5$

24. A farmer borrowed ₹ 3,600 at the rate of 15 % simple interest per Annum. At the end of 4 years, he cleared this account by paying ₹ 4,000 and a cow. The cost of the cow is: Dec 2022 (a) ₹ 1,000 (b) ₹ 1,200 (c) 1,550 (d) ₹ 1,760

Answer:

(d) Here, Principal (P) Rs. 3,600

R=15%, T= 4 years
S.I =
$$\frac{PRT}{100} = \frac{3,600 \times 15 \times 4}{100} = 2,160$$

Amount (A) = P + S.I

$$=3,600+2,160$$

=Rs. 5,760

But he paid Rs. 4,000 and a cow to clear his debt, then

4,000 + the cost of cow = 5,760The cost of cow = 5,760 - 4,000 = Rs. 1,760

SIMPLE INTEREST APPLICATION

25. If ₹ 1,000 be invested at interest rate of 5% and the interest be added to the principal every 10 years, then the number of years in which it will amount to ₹ 2,000 Aug-2007, May 2018

(b) $6\frac{1}{4}$ years (d) $6\frac{2}{3}$ years (a) $16\frac{2}{3}$ years (c) 16 years **Answer**: (a) P= 1,000, R= 5% p.a. s.i, T= 10 years SI = $\frac{PRT}{100=} = \frac{1000 \times 5 \times 10}{100} = 500$ Amount after 10 years A = P + S.I = 1,000 + 500 = 1,500Now after 10 years P = 1,500, R = 5%A = 2,000, T = ? S.I = A - P= 2,000 - - 1,500 = 500 $T = \frac{S.I \times 100}{P \times R} = \frac{500 \times 100}{1,500 \times 5} = \frac{20}{3} = 6\frac{2}{3}$ years Total time taken = 10 years + $6\frac{2}{3}$ years $=16\frac{2}{3}$ years0 26. A person borrows ₹ 5,000 for 2 years at 4% p.a. simple interest. He immediately lends to another person at $6\frac{1}{4}$ % p.a. for 2 years. Find his gain per year : Nov-2007, May 2018 (a) ₹ 112.50 (b) ₹ 125 (c) ₹ 225 (d) ₹ 167.50

(a) ₹ 112.50 (b) ₹ 125 (c) ₹ 225 (d) ₹ 167.50 Answer: (b) Case - 1 P = 5,000R = 4% p.a.s.I.
T = 2 years S.I = $\frac{PRT}{100} = \frac{5,000 \times 4 \times 2}{100} = 400$ Case - 2 P= 5,000 R= $6\frac{1}{4}\% = \frac{25}{4}\%$ p.a.s.i. T = 2 Years S.I = $\frac{PRT}{100} = \frac{5,000 \times 25}{100 \times 4} \times 2 = Rs.$ 625 His gain = 625-400=225

- 27. Two equal sums of money were lent at simple interest at 11% p.a. for 3¹/₂ years and 4¹/₂ years respectively. If the difference in interests for two periods was ₹ 412.50, then each sum is: Feb-2008
 - (a) ₹ 3,250 (b) ₹ 3,500 (c) ₹ 3,750 (d) ₹ 4,350 Solution : Ans:(c) Interest of 4.5 - 3.5 = 1 year is 412.50 $P \times n \times r = 4125.5$ $P \times 1 \times 0.11 = 412.50$ P = 3750
- 28. If a simple interest on a sum of money at 6% p.a. for 7 years is equal to twice of simple interest on another sum for 9 years at 5% p.a.. The ratio will be : June-2011

 (a) 2 : 15
 (b) 7 : 15
 (c) 15 : 7
 (d) 1 : 7
- 29. By mistake a clerk, calculated the simple interest on principal for 5 months at 6.5% p.a. instead of 6 months at 5.5% p.a. if the error in calculation was ₹ 25.40. The original sum of principal was _____.
- (a) ₹ 60,690
 (b) ₹ 60,960
 (c) ₹ 90,660
 (d) ₹ 90,690
 30. If the Simple Interest on ₹ 1,400 for 3 years is less than the simple interest on ₹ 1,800 for the same period by ₹ 80, then the rate of interest is
 a) 5.67%
 b) 6.67%
 c) 7.20%
 d) 5.00%
- 31. Mr. X invests ₹ 90,500 in post office at 7.5 % p.a. simple interest. While calculating the rate was wrongly taken as 5.7% p.a. The difference in amounts at maturity is ₹ 9,774. Find the period for which the sum was invested
 (a) 7 years
 (b) 5.8 years
 (c) 6 years
 (d) 8 years
- 32. A certain sum of money was invested at simple rate of interest for three years. If the same has been invested at a rate that was seven percent higher, the interest amount would have been ₹ 882 more. The amount of sum invested is: Dec-2014

 (a) ₹ 12,600
 (b) ₹ 6,800
 (c) ₹ 4,200
 (d) ₹ 2,800
- 33. A sum of ₹ 44,000 is divided into three parts such that the corresponding interest earned after 2 years, 3 years and 6 years may be equal. If the rates of simple interest are 6% p.a., 8% p.a. and 6% p.a. respectively, then the smallest part of the sum will be June-2015 a) ₹ 4,000 b) ₹ 8,000 c) ₹ 10,000 d) ₹ 12,000

COMPUTING INTEREST MORE THAN ONCE A YEAR

34. A person deposited ₹ 5,000 in a bank. The deposit was left to accumulate at 6% compound				ate at 6% compounded	
	quarterly for the first five years and at 8% compounded semiannually for the next eight years.				
	The compound amount at the end of 13 years is : N			Nov-2007	
	(a) ₹ 12,621.50	(b) ₹ 12,613.10	(d) None.		
	Solution :	on :			
5000→		→			
	6% com	pounded for 5 years	8% compounded sen	ni-annually for 8 years	

8.10

35.

36.

37.

GBC>>>

 $T = 2 \times 4 = 8$ Quarter

d) ₹442

d) ₹9,000

d) 14

Value of Investment after 'T' years

 $A = p \left(1 + \frac{R}{100}\right)^{T}$ = 10,000 $\left(1 + \frac{2}{100}\right)^{8}$ = 10,000 $(1 + 0.02)^{8}$ = 10,000 $(1.02)^{8}$ = 10,000 × 1.171659 = 11,716.59

38. A bank pays 10% rate of interest, interest being calculated half yearly. A sum of ₹400 is deposited in bank. The amount at the end of 1 year will be Nov-2018

c) ₹ 441

c) ₹9,200

a) ₹440 **Answer :**

> (a) Given Principal (P) = 400R = 10% p.a. T = 1 years Amount after T years

A =
$$P\left(1 + \frac{R}{100}\right)^{T}$$

= $400\left(1 + \frac{10}{100}\right)^{1}$
= $400 (1.1)$
= 440

b) ₹9,261

b) ₹ 439

- A man deposited ₹8,000 in a bank for 3 years at 5% per annum compound interest, after 3 years he will get
 Nov-2018
 - a) ₹8,800

Answer: (b) Given P=8,000 R=5% p.a. T=3 Years

Amount after 'T' years

A = P
$$\left(1 + \frac{R}{100}\right)^{T}$$

=8,000 $\left(1 + \frac{5}{100}\right)^{3}$
= 8,000(1.05)³
= 8,000 × 1.05 × 1.05 × 1.05
= 9,261

40. If in two years' time a principal of ₹100 amount to ₹121 when the interest at the rate of r % is compounded annually, then the value of r will be Nov-2018

a) 10.5 b) 10% c) 15
Answer:
(b) Given, Principal (P) =Rs. 100
Amount (A) = Rs. 121
Rate (R) = r% p.a.
Time (T) = 2 years
The Amount after 'T' years

$$A = P\left(1 + \frac{R}{100}\right)^{T}$$

$$121 = 100 \left(1 + \frac{r}{100}\right)^{2}$$

$$\frac{121}{100} = \left(1 + \frac{r}{100}\right)^{2}$$

$$\left(\frac{11}{10}\right)^{2} = \left(1 + \frac{r}{100}\right)^{2}$$

TVM Applications

8.13

on comparing $\frac{\frac{11}{10}}{\frac{11}{10}} = 1 + \frac{r}{100}$ $\frac{\frac{11}{10} - 1}{\frac{11}{10}} = \frac{r}{\frac{100}{100}}$ $\frac{\frac{1}{10}}{\frac{1}{10}} = \frac{r}{\frac{100}{10}}$ $r = \frac{100}{10}$ r = 10%

41. How much will ₹ 25,000 amount to in 2 years at compound interest if the rates for the successive years are 4% and 5% per year
(a) ₹27,300
(b) ₹27,000
(c) ₹27,500
(d) ₹27,900

Answer:

(**d**) Given $R = \frac{7}{4}\%$ Quarterly = 1.75 %

$$T = 1 \times 4$$
 Quarter

= 4 Quarter

- Effective Rate (E) = $\left[\left(1 + \frac{R}{100} \right)^T 1 \right] \times 100\%$ = $\left[\left(1 + \frac{1.75}{100} \right)^4 - 1 \right] \times 100\%$ = $\left[(1 + 0.0175)^4 - 1 \right] \times 100\%$ = $\left[(1.0175)^4 - 1 \right] \times 100\%$ = $\left[1.07185 - 1 \right] \times 100\%$ = $0.0718 \times 100\%$ = 7.18%

Answer :

- (b) Given P = 8,000, R = $\frac{10}{2}$ % = 5%, T= 1×2 h.y, T=2 A = p $\left(1 + \frac{R}{100}\right)^{T}$ = 8,000 $\left(1 + \frac{5}{100}\right)^{2}$ = 8,000 $\left(\frac{21}{20}\right)^{2}$ = 8,000 × $\frac{21}{20}$ × $\frac{21}{20}$ = 20 × 21×21 A = RS. 8,820
- 43. A sum was invested for 3 years as per C.I. and the rate of interest for first year is 9%, 2nd years is 6% and 3rd years is 3% p.a. respectively. Find the sum if the amount in three years is ₹ 550?
 - (a) $\neq 250$ (b) $\neq 300$ (c) $\neq 462.16$ (d) $\neq 350$

44.

Answer:

(c)
$$A = P\left(1 + \frac{R_1}{100}\right) \left(1 + \frac{R_2}{100}\right) \left(1 + \frac{R_3}{100}\right)$$

 $R_1 = 9\%$, $R_2 = 6\%$, $R_3 = 3\%$, $A = 550$
 $550 = P(1 + \frac{9}{100}) \left(1 + \frac{6}{100}\right) \left(1 + \frac{3}{100}\right)$
 $550 = P(1.09)(1.06)(1.03)$
 $P = \frac{550}{1.09 \times 1.06 \times 1.03}$
 $P = \frac{550}{1.190062} = 462.16$
If $P \ i^2 = 96$ and $R = 8\%$ Compound Annually, $P = ?$ June-2019
(a) $\gtrless 14,000$ (b) $\gtrless 15,000$ (c) $\gtrless 16,000$ (d) $\gtrless 17,000$
Answer:

(**b**) if P $i^2 = 96$, and R = 8% Compound Annuity, P= ?

P
$$i^2 = 96$$

P $(\frac{R}{100})^2 = 96$
P $(\frac{8}{100})^2 = 96$
P × (0.08)² = 96
P × 0.0064 = 96
P = $\frac{96}{0.0064}$ = Rs. 15,000

- 45. What will be the population after 3 years when present population is ₹ 25,000 and population increases at the rate of 3% in I year, at 4% in II year and at 5% in III year? Nov-2019 (a) ₹ 28,119 (b) ₹ 29,118 (c) ₹ 27,000 (d) ₹ 30,000. Answer:
 - (a) When population increases at the rate of r_1 % in 1st year, r_2 % in IInd

year and r_3 % in IIIrd year.

Population after "t" years is given by

A = P[1 + $\frac{r_1}{100}$] [1 + $\frac{r_2}{100}$] [1 + $\frac{r_3}{100}$]

Here, P = Rs.25,000

 $r_1 = 3\%$, $r_2 = 4\%$, $r_3 = 5\%$

Population after 3 years = 25,000 $\left[1 + \frac{3}{100}\right] \left[1 + \frac{4}{100}\right] \left[1 + \frac{5}{100}\right]$

= 25,000(1.03)(1.04)(1.05)

= 28119

46. On what sum will the compound interest at 5% per annum for 2 compounded annually be ₹ 3,280. Nov-2020

(a) ₹32,000(b) ₹16,000(c) ₹48,000(d) ₹64,000Answer :

(a)
$$CI = P\left[\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1\right]$$

= 32,000

- 47. An amount P becomes ₹ 5,100.5 and ₹ 5,203 after second and fourth years respectively at 1% of interest per annum compounded annually. Thus values of P and R are: Nov 2020 (a) ₹4,000 and 1.5 (b) ₹5,000 and 1 (c) ₹6,000 and 2 (d) ₹5,500 and 3 Answer :
 - (b) Try the options .

Option (a) \rightarrow Rs. 4,000 and 1.5

This means that P = Rs. 4,000; i = 0.015; t = 2

$$A = P \left(1 + \frac{i}{NOCPPY} \right)^{t \times NOCPPY}$$
$$= 4,000 \left(1 + \frac{0.015}{1} \right)^{2 \times 1}$$

= 4,120.9

Therefore, option (a) cannot be the answer.

Option (b) \rightarrow Rs. 5,000 ; and 1

Here, we have P = Rs. 5,000; i = 0.01; t=2

$$A=P\left(1+\frac{i}{\text{NOCPPY}}\right)^{t\times\text{NOCPPY}}$$
$$=5,000\left(1+\frac{0.01}{1}\right)^{2\times1}$$
$$=5,100.5$$

This satisfies. Now , let's try with 4 years.

$$A = P \left(1 + \frac{i}{\text{NOCPPY}}\right)^{t \times \text{NOCPPY}}$$
$$= 5,000 \left(1 + \frac{0.01}{1}\right)^{4 \times 1}$$
$$= 5,203$$

48. Find the present value of ₹ 1,00,000 to be enquired after 5 years if the interest rate be 9%. Given that $1.09^5 = 1.5386$. **Nov** – **2020**

(a) 78,995.98 (b) 64,994.15 (c) 88,992.43 (d) 93,902.12 **Answer :**

(b) P=
$$\frac{A}{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY}}$$

P = $\frac{1,00,000}{\left(1 + \frac{0.09}{1}\right)^{5 \times 1}}$
= $\frac{1,00,000}{1.5386}$
= 64,994.15

49. R needs money to pay ₹ 5,00,000 in 10 years. He invested a sum in a scheme at 9% rate of interest compounded half-yearly. How much amount (in ₹) he invested? Dec 2021 (1.046²⁰ = 2.41171)

(a) 3,07,321 (b) 2,70,321 (c) 2,07,321 (d) 3,40,321 **Answer:**

(c) We have a= Rs.5,00,000; t=10 years; i=0.09; NOCPPY=2; P=?

$$A = P \left(1 + \frac{i}{NOCPPY} \right)^{t \times NOCPPY}$$

$$\Rightarrow P = \frac{A}{\left(1 + \frac{i}{NOCPPY} \right)^{t \times NOCPPY}}$$

$$=> P = \frac{5,00,000}{\left(1 + \frac{0.09}{2} \right)^{10 \times 2}}$$

$$=> P = \frac{5,00,000}{(1.045)^{20}}$$

$$=> P = \frac{5,00,000}{2.41171}$$

$$=> P = 2,07,321$$

- 50. A company needs ₹ 10,000 in five years to replace as equipment. How much (in ₹) should be invested now at an interest rate of 8% p.a. is order to this equipment? Dec 2021 (a) 6,000 (b) 6,805 (c) 10,000 (d) 11,000 Answer:
 - (b) We have A = Rs.10,000; t=5 years; i=0.08; NOCPPY=1; P=?

$$A = P \left(1 + \frac{i}{NOCPPY} \right)^{t \times NOCPPY}$$

$$\Rightarrow P = \frac{A}{\left(1 + \frac{i}{NOCPPY} \right)^{t \times NOCPPY}}$$

$$\Rightarrow P = \frac{10,000}{\left(1 + \frac{0.08}{1} \right)^{5 \times 1}} = 6,805$$

51. What is the net present value of piece of property which would be valued at ₹ 2 lakh at the end of 2 years? (Annual rate of increase = 5%) Nov-2018
(a) ₹ 1.81 lakh
(b) ₹ 2.01 lakh
(c) ₹ 2.00 lakh
(d) None

(a) Let, Present Value (P) = P

A = Rs. 2,00,000
R = 5%
T = 2 Years
A = P
$$(1 + \frac{R}{100})^T$$

2,00,000 = P $(1 + \frac{5}{100})^2$
2,00.000 = P $(1.05)^2$
P = $\frac{2,00,000}{(1.05)^2}$
= $\frac{2,00,000}{1.1025}$ = 1.81.405.896
= 1.81 Lakhs

52. A sum of money compounded annually becomes ₹ 1,140 in two years and ₹ 1,710 in three years. Find the rate of interest per annum

(a) 30%
(b) 40%
(c) 50%
(d) 60%

Solution :

GBC>>>

	$FV = PV(1+r)^n$	$1140 = P(1+r)^2$	1710 = P(1)	+r) ³ Divide
	$P(1+r)^3$ 1710			
	$\frac{1}{P(1+r)^2} = \frac{1}{1140}$			
53.	1+r = 1.5 If the nominal rate of growth Domestic Product (GDP) a years is:	r = 50% n is 17% and inflation mount at the present	is 9% for the five y year then the proj	ears. Let P be the Gross ected real GDP after 6 July 2021
	(a) 1.587 P Answer :	(b) 1.921 P	(c) 1.403 P	(d) 2.51 P
	(a) Nominal Rate = Rea	l Rate + Inflation Rate	e	
	17 % = Real Rate + 9	9 %		
	Real Rate = 17% - 9%	6 = 8 %		
	Present $GDP = P$			
54.	GDP after 6 years = H At what % rate of compoun years, if interest is being cal (a) $r = 100\%$	$(1.08)^6 = 1.5869P$ d interest (C.I) will a solution (b) $r = 10\%$	≈ 1.587P sum of money becc annually. June (c) $r = 200\%$	times in four 2010 (d) $r = 20\%$
	Solution :	× 4	N 0	210
	1→2 1 vear	→4 1 vear	→ 8 1 vear	1 vear
	$FV = PV(1+r)^n \qquad 16x$	$= \mathbf{x}(1+\mathbf{r})^4$ By Trial	and error $r = 100\%$	6 Your
	COM	POUND INTE	<u>REST IN ₹</u>	
55.	If the simple interest on a su	m of money at 12% p.	a. for two years is ^a	₹ 3,600. The compound
	interest on the same sum for	r two years at the same	e rate is :	June-2010
	(a) ₹ 3,816	(b) ₹ 3,806	(c) ₹ 3,861	(d) ₹ 3,860
	Simple Interest = P.t.r = 36 2 years compound Interest =	$\begin{array}{l} 00 P \times 2 \times 0.12 = 3 \\ = FV - PV = PV (1 + 1) \end{array}$	P = 15,00 $r)^{n} - PV = 15,000$	$00 (1 + 0.12)^2 - 15,000 =$
_	3816			
56.	The Partners A & B togethe	er lent ₹ 3,903 at 4% j	p.a interest compou	inded annually. After a

of ₹3,903/- would have been : **June-2014** a) ₹ 1.875 d) ₹ 2,820 b) ₹ 2,280 c) ₹ 2,028 **Answer:** (c) Let Principal of A (P₁) = Rs. x Rate R₁ = 4 % p.a. T_1 = 7 years Principal of B (P₂) = Rs. (3,903 - x) \mathbf{R}_2 =4% T_2 =9 years $=A_2$ A_2 $P_{1}(1 + \frac{R_{1}}{100})^{T_{2}}$ $x(1 + \frac{4}{100})^{7}$ $=P_2(1+\frac{R_2}{100})^{T_2}$ $= (3,903 - x)(1 + \frac{4}{100})^9$ $= \frac{(1.04)^9}{(1.04)^7}$ 3903 – x

span of 7 years, A gets the same amount as B gets after 9 years. The share of A in the sum

$\frac{X}{3903 - x}$	$=(1.04)^2$
X	=1.0816
<u>3903 – x</u>	
x x x+1.0816x 2.0816x x x	=10816(3,903 - x) = 4221.4848 - 1.0816x =4,221.4848 =4,221.4848 =4,221.4848 =4,221.4848 =4,221.4848 =2,0816 = 2,028 =2,028
The share of A	7

57. The simple interest for a certain sum for 2 years at 10% per annum is ₹ 90. The corresponding compound interest is (in ₹):

a) 99 b) 95.60 c) 94.50 d) 108 Answer: (C) Let Principal (P) = Rs. X= 2 years, R = 10% p.a Т S.I = Rs. 90 $=\frac{S.I.\times 100}{R\times T}=\frac{90\times 100}{10\times 2}=Rs.$ 450 Р Now $\text{C.I.} = P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$ $= 450 \left[\left(1 + \frac{10}{100} \right)^2 - 1 \right]$ $=450[(1+0.1)^2-1]$ $=450 \times [(1.1)^2 - 1]$ $=450 \times (1.21 - 1)$ $=450 \times 0.21$ = 94.50

58. If an amount is kept at simple interest, it earns an interest of ₹ 600 in first two years but when kept at compound interest it earns an interest of ₹ 660 for the same period, then the rate of interest and principal amount respectively are:

a) 20%, ₹1,200 b) 10%, ₹1,200 c) 20%, ₹1,500 d) 10%, ₹1,500 Answer : (c) For 2 years

$$S.I. = 600 \text{ and } C.I. = 660$$

$$S.I. = \frac{PRT}{100}$$

$$600 = \frac{PR \times 2}{100}$$

$$PR = \frac{600 \times 100}{2}$$

$$PR = 30000 => P = \frac{30000}{R} - (1)$$

$$C.I. = P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$$

$$660 = \frac{30000}{R}\left[\left(1 + \frac{R}{100} + 1\right)\left(1 + \frac{R}{100} + 1\right)\right]$$

$$660 = \frac{30000}{R} \left[\left(2 + \frac{R}{100} \right) \left(\frac{R}{100} \right) \right]$$

$$660 = 30000 \left[\frac{200 + R}{100} \right] \cdot \frac{1}{100}$$

$$660 \times 100 \times 100 = 30000(200 + R)$$

$$200 + R = \frac{660 \times 100 \times 100}{30000}$$

$$200 + R = 220$$

$$R = 20\%$$

$$R = 20\%$$
 in equation (1)

$$P = \frac{30000}{20} = 1500$$

- 59. If an amount is kept at S.I. it earns an interest of ₹ 600 in first two years but when kept at compound interest it earns an interest of ₹ 660 for the same period, then the rate of interest and principal amount respectively are: **May-2018** 200 d) 10%, ₹ 1,500 a)

a) 20%, ₹1,200
b) 20%, ₹1,500
c) 10%, ₹1,2
Answer:
Case - 1
Let P = x, R=R.T=2, S.I = 600
S.I. =
$$\frac{PRT}{100}$$

 $600 = \frac{XR2}{100}$
XR = $\frac{600 \times 100}{2}$
XR = 30,000
X = $\left[\frac{(30.000)}{R}\right]$ ------(1)
Case - 2
P = x, R = R. T = 2. C.I = 660
C.I = P [$\left(1 + \frac{R}{100}\right)^2$ - 1]
 $660 = \left(\frac{30,000}{R}\right) \left[\left(1 + \frac{R}{100} + 1\right)(1 + \frac{R}{100})$ -1]
 $660 = \frac{30,000}{R} \times \left(2 + \frac{R}{100}\right) \times \frac{R}{100}$
 $\frac{660}{300} = 2 + \frac{R}{100}$
 $\frac{R}{100} = \frac{660}{300} - 2$
 $\frac{R}{100} = \frac{60}{300}$
R = $\frac{60 \times 100}{300} = 20\%$

Putting R = 20% in $X = \frac{30,000}{20}$ X = Rs.1500

Answer: P=X= Rs.1500 R=20% p.a

If compound interest on a sum for 2 years at 4% per annum is ₹ 102, then the simple interest **60.** on the same sum for the same period at the same rate will be Nov-2018 a. ₹ 99 b. ₹ 101 c. ₹100 d **₹**95 Answer: Given T = 2 Years (c)

GRC>>

8.20

C.I. = Rs. 102
R = 4%
P = ?
C.I. = P [(1 +
$$\frac{R}{100}$$
)^T - 1]
102 = P [(1 + $\frac{4}{100}$)² - 1]
102 = P [(1.04)² - 1]
102 = P [(1.0816 - 1])
102 = P (0.0816)
P = $\frac{102}{0.0816}$ = 1,250
Now, S.I. = $\frac{PRT}{100}$ = $\frac{1,250 \times 4 \times 2}{100}$ = $\frac{10,000}{100}$ = Rs. 100
on invests an amount of ₹ 15.860 in the names of his

61. A man invests an amount of ₹ 15,860 in the names of his three sons A, B and C in such a way that they get the same amount after 2, 3 and 4 years respectively. If the rate of interest is 5%, then the ratio of the amount invested in the name of A, B and C is Nov-2018

a. 6: 4: 3
b. 3: 4: 6
c. 30: 12: 15
d. None

Answer:

(a) Total Amount invested = Rs. 15,860

1 1 4

Amount invested into three persons (Son's) A, B, C.

Let,

Amount invest in the Name of A = Rs. xAmount invest in the Name of B = Rs. yAmount invest in the Name of C = Rs. Z

Then

Case - 1 For A

$$P_1 = \text{Rs. } x, R_{1=} 5\%, T_{1=2 Years}$$

 $(S.I)_{1=} \frac{P_{1R_1T_1}}{100} = \frac{x \times 5 \times 2}{100} = \frac{10x}{100}$
Case - 2 For B
 $P_{2=Rs.Y.} R_{2=5\%}, T_2 = 3 \text{ Years}$
 $(S,I)_{2=} \frac{P_{2R,2,T_2}}{100} = \frac{x \times 5 \times 3}{100} = \frac{15x}{100}$

Case - 3 For C

$$P_{3=Rs.z.} R_{3=5\%}, T_{3} = 4$$
 Years
 $(S.I)_{3} = \frac{P_{3R_{3}T_{3}}}{100} = \frac{Z \times 5 \times 4}{100} = \frac{20Z}{100}$
Given $(S.I)_{1} = (S.I.)_{2} = (S.I.)_{3}$
 $\frac{10X}{100} = \frac{15Y}{100} = \frac{20Z}{100}$
 $= > 10X = 15Y = 20Z = K$
 $10X = 15Y = 20Z = K$
 $10X = k, 15Y = k, 20Z = k$
 $X = \frac{K}{10}, Y = \frac{K}{15}, Z = \frac{K}{20}$
 $X:Y:Z = \frac{K}{10}, \frac{K}{15}; \frac{K}{20}$
Type equation here.
 $= \frac{1}{10}; \frac{1}{15}; \frac{1}{20} = 60 \times \frac{1}{10}; 60 \times \frac{1}{15}; 60 \times \frac{1}{20}$
 $= 6:4:3$

62. A sum of money is lent at C.I. Rate 20% p.a. 2 years. It would fetch ₹ 482 more if the interest is compounded half yearly. The sum is:
(a) ₹ 19,800
(b) ₹ 19,900
(c) ₹ 20,000
(d) ₹ 20,100

63.	What is the compound int if the interest is compound	erest (in ₹) on a sur led half yearly?	m of ₹ 12,600 for $1^{1/2}$	years at 20% per annum July – 2021		
64.	 (Nearest to a rupee). (a) 4,271 A sum of ₹ 7,500 amount certain time. The simple in is: 	(b) 4,171 ts to ₹ 9,075 at 109 nterest (in ₹) on the	(c) 4,711 % p.a., interest being (same sum for the sam	(d) $4,117$ compounded yearly in a e time and the same rate July -2021 An		
	(a) 1,000 Answer :	(b) 1,250	(c) 1,800	(d) 1,500		
	(d) For Compound Interset, we have $P = 7,500$; $A = 9,075$; $i = 0.10$;					
	NOCPPY = 1 ; $t = 3$?				
	We know that A =	$P\left(1+\frac{i}{NOCPPY}\right)^{t\times N}$	ОСРРҮ			
	=>9,075 = 7,500 (2	$\left(1+\frac{0.10}{1}\right)^{t\times 1}$				
	$=>(1.10)^{t}=\frac{9,075}{7,500}$	= 1.21				
	On calculator, we	find that $(1.10)^2 =$	1.21			
	Therefore, $t = 2$ ye	ears.				
	Now, for Simple In	nterest, we have P	= 7,500 ; i = 0.10 ; t =	2 years ;		
	I =?					
	I = Pit					
	T 7 500 0 10					
	$1 = 7,500 \times 0.10 \times 10^{-10}$	2 = 1,500				
65.	A sum of money is put at amount just exceeds the d	2 = 1,500 t 20% compound in ouble of the origina	nterest rate p.a. At wh l sum?	tich year the aggregated Dec 2021		
65.	A sum of money is put at amount just exceeds the det (a) 6	2 = 1,500 t 20% compound in ouble of the origina (b) 5	nterest rate p.a. At wh l sum? (c) 4	hich year the aggregated Dec 2021 (d) 3		
65.	A sum of money is put at amount just exceeds the de (a) 6 Answer: (b) $i = 0.20$, $P = 100$	2 = 1,500 t 20% compound in ouble of the origina (b) 5	nterest rate p.a. At wh l sum? (c) 4	tich year the aggregated Dec 2021 (d) 3		
65.	A sum of money is put at amount just exceeds the de (a) 6 Answer: (c) $i = 0.20, P = 100,$	2 = 1,500 t 20% compound in ouble of the origina (b) 5 NOCPPY = 1, t = 1 $t \ge t \ge$	nterest rate p.a. At wh l sum? (c) 4 ?	ich year the aggregated Dec 2021 (d) 3		
65.	A sum of money is put at amount just exceeds the definition (a) 6 Answer: (c) $i = 0.20, P = 100,$ $A = P \left(1 + \frac{i}{NOCPP}\right)$	2 = 1,500 t 20% compound in ouble of the origina (b) 5 NOCPPY = 1, t = $\frac{1}{Y}$	nterest rate p.a. At wh l sum? (c) 4 ?	ich year the aggregated Dec 2021 (d) 3		
65.	A sum of money is put at amount just exceeds the definition (a) 6 Answer: (c) $i = 0.20, P = 100,$ $A = P \left(1 + \frac{i}{NOCPP}\right)$ Try the options.	2 = 1,500 t 20% compound in ouble of the origina (b) 5 NOCPPY = 1, t = 7 \overline{Y}	nterest rate p.a. At wh l sum? (c) 4 ?	ich year the aggregated Dec 2021 (d) 3		
65.	A sum of money is put at amount just exceeds the definition (a) 6 Answer: (c) $i = 0.20, P = 100,$ $A = P \left(1 + \frac{i}{NOCPP}\right)$ Try the options. Option (a) $\rightarrow 6$	2 = 1,500 t 20% compound in ouble of the origina (b) 5 NOCPPY = 1, t = 7 NOCPPY $\frac{1}{2} \int_{Y}^{t \times NOCPPY}$	nterest rate p.a. At wh l sum? (c) 4 ?	ich year the aggregated Dec 2021 (d) 3		
65.	A sum of money is put at amount just exceeds the definition (a) 6 Answer: (c) $i = 0.20, P = 100,$ $A = P \left(1 + \frac{i}{NOCPP}\right)$ Try the options. Option (a) $\rightarrow 6$ $A = 100 \left(1 + \frac{0.20}{1}\right)$	2 = 1,500 t 20% compound in ouble of the origina (b) 5 NOCPPY = 1, t = $\frac{1}{Y}$ $t \ge NOCPPY$ $\frac{1}{Y}$ $t \ge 298.5894$	nterest rate p.a. At wh l sum? (c) 4 ?	ich year the aggregated Dec 2021 (d) 3		
65.	A sum of money is put at amount just exceeds the definition (a) 6 Answer: (c) $i = 0.20, P = 100,$ $A = P \left(1 + \frac{i}{NOCPP}\right)$ Try the options. Option (a) $\rightarrow 6$ $A = 100 \left(1 + \frac{0.20}{1}\right)$ Option (b) $\rightarrow 5$	2 = 1,500 t 20% compound in ouble of the origina (b) 5 NOCPPY = 1, t = 7 \overline{Y}) ^{t×NOCPPY} $(\overline{Y})^{t \times NOCPPY}$ $(\overline{Y})^{t \times NOCPPY}$ $(\overline{Y})^{t \times NOCPPY}$	nterest rate p.a. At wh l sum? (c) 4 ?	ich year the aggregated Dec 2021 (d) 3		
65.	A sum of money is put at amount just exceeds the definition (a) 6 Answer: (c) $i = 0.20, P = 100,$ $A = P \left(1 + \frac{i}{NOCPP}\right)$ Try the options. Option (a) $\rightarrow 6$ $A = 100 \left(1 + \frac{0.20}{1}\right)$ Option (b) $\rightarrow 5$ $A = 100 \left(1 + \frac{0.20}{1}\right)$	2 = 1,500 t 20% compound in ouble of the origina (b) 5 NOCPPY = 1, t = $\frac{1}{\sqrt{y}}t^{\times NOCPPY}$ $\frac{1}{\sqrt{y}}t^{\times NOCPPY}$ = 298.5894 $5 \times 1 = 248.832$	nterest rate p.a. At wh l sum? (c) 4 ?	ich year the aggregated Dec 2021 (d) 3		
65.	A sum of money is put at amount just exceeds the definition (a) 6 Answer: (c) $i = 0.20, P = 100,$ $A = P \left(1 + \frac{i}{NOCPP}\right)$ Try the options. Option (a) $\rightarrow 6$ $A = 100 \left(1 + \frac{0.20}{1}\right)$ Option (b) $\rightarrow 5$ $A = 100 \left(1 + \frac{0.20}{1}\right)$ Option (c) $\rightarrow 4$	2 = 1,500 t 20% compound in ouble of the origina (b) 5 NOCPPY = 1, t = $\frac{1}{\sqrt{y}}t^{\times NOCPPY}$ $\frac{1}{\sqrt{y}}t^{\times NOCPPY}$ $\frac{1}{\sqrt{y}}t^{\times 1} = 298.5894$ $5 \times 1 = 248.832$	nterest rate p.a. At wh l sum? (c) 4 ?	ich year the aggregated Dec 2021 (d) 3		
65.	A sum of money is put at amount just exceeds the definition (a) 6 Answer: (c) $i = 0.20, P = 100,$ $A = P \left(1 + \frac{i}{NOCPP}\right)$ Try the options. Option (a) $\rightarrow 6$ $A = 100 \left(1 + \frac{0.20}{1}\right)$ Option (b) $\rightarrow 5$ $A = 100 \left(1 + \frac{0.20}{1}\right)$ Option (c) $\rightarrow 4$ $A = 100 \left(1 + \frac{0.20}{1}\right)^4$	2 = 1,500 t 20% compound in ouble of the origina (b) 5 NOCPPY = 1, t = $\frac{1}{\sqrt{y}}$ $t^{\times NOCPPY}$ $t^{\times NOCPPY}$ $t^{\times 1} = 298.5894$ $t^{\times 1} = 248.832$ $t^{\times 1} = 207.36$	nterest rate p.a. At wh l sum? (c) 4 ?	ich year the aggregated Dec 2021 (d) 3		
65.	A sum of money is put at amount just exceeds the de (a) 6 Answer: (c) $i = 0.20, P = 100,$ $A = P \left(1 + \frac{i}{NOCPP}\right)$ Try the options. Option (a) $\rightarrow 6$ $A = 100 \left(1 + \frac{0.20}{1}\right)$ Option (b) $\rightarrow 5$ $A = 100 \left(1 + \frac{0.20}{1}\right)$ Option (c) $\rightarrow 4$ $A = 100 \left(1 + \frac{0.20}{1}\right)^4$ Option (d) $\rightarrow 3$	2 = 1,500 t 20% compound in ouble of the origina (b) 5 NOCPPY = 1, t = $\frac{1}{Y}$ $\int_{Y}^{t \times NOCPPY}$ $\int_{Y}^{t \times NOCPPY}$ = 298.5894 $\int_{Y}^{5 \times 1} = 248.832$ $\int_{Y}^{5 \times 1} = 207.36$	nterest rate p.a. At wh l sum? (c) 4 ?	ich year the aggregated Dec 2021 (d) 3		

Therefore, option (c) is the answer.

4

A certain sum invested at 4% per annum compounded semi-annually amounts to ₹1,20,000 **66.** at the end of one year. Find the sum: Nov - 2020 (c) 1,12,812 (d) 1,13,113

(a) 1.15,340 **Answer** :

(b) 1,10,120

(a)
$$A = P \left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY}$$

 $P = \frac{A}{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY}}$
 $P = \frac{1,20,000}{\left(1 + \frac{0.04}{2}\right)^{1 \times 2}}$
 $= 1,15,340$

67. Find the compound interest if an amount of \neq 50,000 is deposited in a bank for one year at the rate of 8% per annum compounded semi-annually. Nov - 2020 (a) ₹ 3,080 (b) ₹ 4,080 (c) ₹ 5456 (d) ₹ 7,856 **Answer:**

(**b**) CI=P
$$\left[\left(1 + \frac{i}{NOCPPY} \right)^{t \times NOCPPY} - 1 \right]$$

CI=50,000 $\left[\left(1 + \frac{0.08}{2} \right)^{1 \times 2} - 1 \right]$
=4.080

The ratio of principal and the compound interest value for three years (compounded **68.** annually) is 216:127 Nov - 2020

The rate of interest is: (b) 0.1777 (c) 0.1667 (d) 0.1588 (a) 0.1567 **Answer:**

(c) If Principal is Rs. 216, Compound Interest is Rs. 127. Therefore,

Amount =Rs.216 + Rs.127= Rs.343.

$$A = P \left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY}$$

$$343 = 216 \left(1 + \frac{i}{1}\right)^{3 \times 1}$$

$$\frac{343}{216} = (1 + i)^{3}$$
1.58796 = $(1 + i)^{3}$
Try the options.
Option (a) $\rightarrow 0.1777$
RHS = $(1 + 0.1777)^{2} = 1.633 = 1.587$
Option (b) $\rightarrow 0.1567$
RHS = $(1 + 0.1567)^{3} = 1.547 = 1.587$
Option (c) $\rightarrow 0.1666$
RHS = $(1 + 0.1666)^{3} = 1.587 = LHS$

Therefore, option (c) is the answer.

69. Find the amount of compound interest, if an amount of ₹ 50,000 is deposited in a bank for one year at the rate of 8% per annum compounded semiannually Jan - 2021

(a) 3080
(b) 4080
(c) 5456
(d) 7856

Answer:

(b) CI = P
$$\left[\left(1 + \frac{i}{NOCPPY} \right)^{t \times NOCPPY} - 1 \right]$$

CI = 50,000 $\left[\left(1 + \frac{0.08}{2} \right)^{1 \times 2} - 1 \right]$

=4,080

- 70. The simple on sum at 4% p.a. for 2 years is ₹ 80. Find the CI on the came sum for the same period.
 Jan 2021
 - (a) ₹ 81.6 (b) ₹ 80.8 (c) ₹ 83.2 (d) ₹ 82.3 Answer:

(a) I= Pit

$$P = \frac{I}{it} = \frac{80}{0.04 \times 2} = 1,000$$

$$CI = P \left[\left(1 + \frac{i}{NOCPPY} \right)^{t \times NOCPPY} - 1 \right]$$

$$CI = 1,000 \left[\left(1 + \frac{0.04}{2} \right)^{1 \times 2} - 1 \right]$$

$$= 81.60$$
DIFFERENCE BETWEEN SI AND CI

71. A compound interest on a sum for 2 years is ₹30 more than the simple interest at the rate of 5% per annum then the sum is **Dec-2016** (a) ₹11,000 (b) ₹13,000 (d) ₹15,000 (c) ₹12,000 Answear: (c) Given C.I. - S.I. = 30 = 2 years Т R = 5% $= P\left(\frac{R}{100}\right)2$ C.I. - S.I $= P\left(\frac{5}{100}\right) 2$ 30 = P(0.05)230 30 = P(0.0025) $P = \frac{30}{0.0025}$ =Rs. 12,000 72. If the difference between the compound interest compounded annually and simple interest on a certain amount at 10% per annum for two years is ₹ 372, then the principal amount is **Nov-2018** a. ₹ 37,200 b. ₹ 37,000 c. ₹ 37,500 d. None of the

above **Answer:** (a) For two year C.I. – S.I. = P ($\frac{R}{100}$)² 372 = P ($\frac{10}{100}$)² 372 = P (0.1)²

$$P = \frac{372}{(0.1)^2} = \frac{372}{001} \times 100 = 37,200$$

73. The difference between CI and SI for 2 years, is 21. If rate of interest is 5% find principal : Nov-2019

(a) $\gtrless 8,400$ (b) $\gtrless 4,800$ (c) $\gtrless 8,000$ (d) $\gtrless 8,200$ Answer:

(a) Method 1

Difference between SI and CI for 2 years is given by

$$CI - SI = P\left(\frac{R}{100}\right)^{2}$$
$$21 = P\left(\frac{5}{100}\right)^{2}$$
$$\Rightarrow P = \frac{21 \times 100 \times 100}{5 \times 5} = Rs.8400$$

Method 2

$$CI = P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$$

$$CI = P\left[\left(1 + \frac{5}{100}\right)^{2} - 1\right]$$

$$CI = P\left[1.1025 - 1\right]$$

$$CI = P(0.1025)$$

$$CI - SI = 0.1025 P - 0.1P$$

$$21 = 0.0025 P$$

$$P = Rs. \frac{21}{0.0025} = Rs. 8400$$

So principal is Rs. 8400

- 74. The difference between compound interest and simple interest on a certain sum for 2 years
 @ 10% p.a. is ₹ 10. Find the sum :
 (a) ₹ 1,010
 (b) ₹ 1,095
 (c) ₹ 1,000
 (d) ₹ 990
- **75.** If the difference of S.I and C.I is ₹ 72 at 12% for 2 years. Calculated the amount. June-2011(a) ₹ 8,000(b) ₹ 6,000(c) ₹ 5,000(d) ₹ 7,750.Solution : Difference =72=P(1+r)ⁿ-P- Pnr $P(1+0.12)^2 P P \times 2 \times 0.12 P = 5000$

76. On what sum difference between compound interest and simple interest for two years at 7% p.a. interest is ₹ 29.4 Dec-2013

 (a) ₹ 5,000
 (b) ₹ 55,000
 (c) ₹ 6,000
 (d) ₹ 6,500

(a) ₹ 5,000 (b) ₹ 55,000 (c) ₹ 6,000 Solution : Rate = 7% p.a., n = 2 years Difference between S.I and C.I = 29.4 $p[(1+r)^n - 1 - nr] = 29.4$ $\Rightarrow p[(1+0.07)^2 - 1 - 2 \times 0.07] = 29.4$ p [1.1449 - 1 - 0.14] = 29.4 p [0.0049] = 29.4 p = $\frac{29.4}{0.0049}$ p = 6000 Ans.

77. A compound interest on a sum for 2 years is ₹30 more than the simple interest at the rate of 5% per annum then the sum isDec-2016

78.	(a) ₹11,000 If the difference between	(b) ₹13,000 the compound interest	(c) ₹12,000 compounded annually	(d) ₹15,000 and simple interest		
	on a certain amount at 10% per annum for two years is ₹ 372, then the principal amoun					
	a. ₹ 37.200		b. ₹ 37.000			
	c. ₹ 37,500		d. None of the above	e		
79.	The difference between C Nov-2019	I and SI for 2 years, is	21. If rate of interest is	s 5% find principal :		
	(a) ₹ 8,400	(b) ₹ 4,800	(c) ₹ 8,000	(d) ₹ 8,200		
80.	What is the difference (in $\frac{3}{2}$	() between the simple i	nterest and the compou	and interest on a sum		
	of $₹$ 8,000 for 2 ⁻ / ₅ years at	the rate of 10% p.a	, when the interest is c	compounded yearly?		
	July -2021	(h) 120 50	(a) 151.75	(\mathbf{d}) 147 20		
81.	(a) 155.75 The difference between co	(b) 129.50 ompound interest and si	mple interest on an am	(d) 147.20 nount of ₹ 15,000 for		
	2 years is ₹ 96. What is th	e rate of interest per An	nnum? Dec 20)22		
	(a) 9%	(b) 8%	(c) 11%	(d) 10%		
				P		
82	The effective rate equivale	IIVE KAIE	% compounded month	$\frac{1}{1000}$		
02.	(a) 6.05	(b) 6.16	(c) 6.26	(d) 6.07		
83.	Nominal rate of interest is	s 9.9% p.a. If interest i	s Compounded month	ly. What will be the		
	effective rate of interest			Dec-2011		
	$\left(given \left(\frac{4033}{4000}\right)^{12} = 1.103\right)$	86 (approx))?				
0.4	a) 10.36%	b) 9.36%	c) 11.36%	d) 9.9%		
84.	interest per annum conver	tible quarterly is	sit corresponding to a	nominal /% rate of Nov-2018		
95	a. ₹7% The effective rote of interv	b. ₹7.5 %	c. ₹ 7.4 %	d. ₹ 7.18 %		
05.	(a) Amount of Principal	est does not depend upo	(b) Amount of Intere	June-2019		
	(c) Number of Conversion	Periods	(0) 1 1110 unit 01 11101	(d) None of these		
	Answer:					
	(a) The Effective Rate	of Interest does not dep	pends upon principal.			
86.	Find the effective rate of i p.a.	nterest on ₹ 10,000 on	which interest is payal	ble half yearly at 5% Nov-2019		
	(a) 5.06% Answer:	(b) 4%	(c) 0.4%	(d) 3%		
	(a) Here, $R = 5\%$ T =	1 yr				
	Since interest is pay	vable half vearly				
	$R = \frac{5}{2}$ % and $T = 1$	x 2 = 2 year				
	$\Sigma = [(1 + \frac{R}{100})^T +$	- 1] × 100				
	$\sum = \left[\left(1 + \frac{5}{2 \times 100} \right) \right]$	$^{2}-1] \times 100$				

 $\sum = [(1.025)^2 - 1] \times 100$

 $\Sigma = [0.050625] \times 100$

 $\Sigma = 5.0625\%$

- $\Sigma = 5.06\%$ (approx)
- 87. Find the effective rate of interest at 10% p.a. when interest is payable quarterly. Nov-2019
 (a) 10.38%
 (b) 5%
 (c) 5.04%
 (d) 4%
 Answer:
 - (a) Here R=10% T= 1Year

1 0 0/

Since interest is payable quarterly

$$R = \frac{10\%}{4} \quad T = 1 \times 4 \text{ years}$$

$$\Sigma = \left[(1 + \frac{R}{100})^T - 1 \right] \times 100$$

$$\Sigma = \left[\left(1 + \frac{10}{4 \times 100} \right)^4 - 1 \right] \times 100$$

$$\Sigma = \left[(1.025)^4 - 1 \right] \times 100$$

$$\Sigma = 10.38\%$$

- 88. An amount is lent at a nominal rate of 4.5% per annum compounded quarterly. What would be the gain in rupees over when compounded annually?
 Nov 2020
 (a) 0.56
 (b) 0.45
 (c) 0.76
 (d) 0.85
 Answer:
 - (c) There is an ambiguity in this question. We can determine the gain "in rupees" correctly only when the amount invested is given to us; otherwise, we can only determine the gain in percentage. In this question, however, the amount invested is not given to us. Right now, the rate of interest is 4.5% p.a. compounded quarterly. This means, that effectively, in a user the rate of interest is $E_{\rm e} = (1 + \frac{0.045}{124}) 1 \times 4.576\%$

in a year the rate of interest is $E = (1 + \frac{0.045}{4})^{1 \times 4} - 1 = 4.576\%$.

The question wants to ask us that if the 4.5% p.a. given in the question was compounded annually, what would have been our gain.

So. We can see that if the 4.5% p.a. was compounded annually, we would have gotten 4.5% interest in a year.

However, when this 4.5% p.a. is compounded annually, our effective rate

becomes 4.576% p.a. and we get this much interest in a year.

So, gain in interest in a year = 4,576% - 4,5% = 0.076%.

Now, if we consider the principal to be Rs. 1,000, then only the gain in

rupees would be 0.076% of Rs.1,000 = Rs. 0.76.

Of course, when such ambiguity will come in the exam, it will not immediately click on your mind to take the principal as Rs.1,000. Do not panic, if this question is ambiguous for you, it is ambiguous for everyone.

89. Which is a better investment 9% p.a. compounded quarterly or 9.1% p.a. simple interest? Jan - 2021

(a) 9% compounded (b) 9.1% S.T. (c) Both are same (d) Cannot be said

Answer:

(a) Effective rate of Interest = $E = \left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY}$ - 1 %

$$= \left(1 + \frac{0.09}{4}\right)^{1 \times 4} - 1 = 9.3085$$

Since 9.1% p.a. simple interest is less than this, therefore, 9% p.a.

compounded quarterly is

a better investment.

- 90. The effective rate of interest corresponding to a nominal rate of 7% p.a. compounded quarterly is **Jan - 2021**
 - (a) 7.5% (b) 7.6% (c) 7.7% (d) 7.18% **Answer:**

(d)
$$E = \left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1$$

= $\left(1 + \frac{0.07}{4}\right)^{1 \times 4} - 1 = 7.18\%$

91. What 'I' denote the actual rate of interest in decimal, and n denote the number of conversion periods, the formula for computing the effective rate of interest E is given by. **Jan - 2021** (a) $(1 + i)^n$ (b) $(1+i)^n - 1$ (c) $1 - (1 + i)^n$ (d) $(1 + i)^{-n}$ **Answer:**

(**b**)
$$\mathbf{E} = \left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1$$

=>E= $(1 + i)^n$ -1

92. The effective rate of return for 24% per annum convertible monthly is given as: July 2021

(a) 24% (b) 26.82% (c) 18% (d) 24.24% **Answer:**

(b) We have i=0.24;NOCPPY=12; t=1 years,E=?

$$E = \left(1 + \frac{i}{\text{NOCPPY}}\right)^{t \times \text{NOCPPY}} - 1$$
$$=>E = \left(1 + \frac{0.24}{12}\right)^{1 \times 12} - 1 = 26.82\%$$

93. The effective rate of interest corresponding a nominal rate of 7% p.a. convertible quarterly.

June 2022

(a)
$$7\%$$
 (b) 7.5% (c) 5% (d) 7.18%

Answer:

(d) If Interest is paid Quarterly

$$R = \frac{7}{10}\% = 1.75\%$$

$$\Gamma = 1$$
 year $= 1 \times 4$ Quarterly

Effective Rate

$$E = \left[(1 + \frac{R}{100})^T - 1 \right] \times 100$$
$$= \left[(1 + \frac{1.75}{100})^4 - 1 \right] \times 100$$

$$= [(1 + 0.0175)^4 - 1] \times 100$$
$$= [(1.0175)^4 - 1] \times 100$$
$$= [1.0718 - 1] \times 100$$
$$= 0.0718 \times 100$$

= 7.18%

94. The effective annual rate of interest corresponding to normal rate of 6% per annu7m payable half yearly is: Dec 2022

(a) 6.06%
(b) 6.07%
(c) 6.08%
(d) 6.09%

Answer:

96.

(d) Given,
$$R = \frac{6}{2}\% = 3\%$$

R = 3%, T = 1 × 2 half yearly
T = 2

Effective Rate of Interest

$$E = \left[(1 + \frac{R}{100})^{T} - 1 \right] \times 100\%$$
$$= \left[(1 + \frac{3}{100})^{2} - 1 \right] \times 100\%$$
$$= [1.0609 - 1] \times 100\%$$
$$= 0.0609 \times 100\%$$
$$= 6.09\%$$

RULE OF 72 & 114

95. Find the numbers of years in which a sum doubles itself at the rate of 8% per annum. Dec-2008

(a) $11\frac{1}{2}$ years	(b) 12	$\frac{1}{2}$ years	(c) $9\frac{1}{2}$ years	(d) $13\frac{1}{2}$ years
Solution	: Assuming simpl	e Interest	Double	es in $\frac{100}{8} = 12.5$ years
	$-\log 2$ =	log 2		0
Solution : Doubl	es in $\log(1+r)$	$\log(1+0.05)$	= 14.2 year	s
If a sum triples in	n 15 yrs at Simpl	e rate of inter	est, the rate of int	erest per annum will be :
June-2014				
a) 13.0%	b) 13.3	3%	c) 13.5%	d) 18.0%
Answer (b)				
Le	et Principal P	= P		
Aı	mount A	= 3F		
Т		= 15	years	
S.	Ι	= A	– P	
		= 3F	P – P	
-		2P	×100	
R		$=\frac{3.1}{1}$	×100 ×T	
		$=\frac{2\dot{P}}{2}$	×100	
		P 20	×15 0	
R		= 15	;	
IX IX		$=\frac{40}{3}$		

100

200

300

= 13.3%97. A sum of money invested of compound interest doubles itself in four years. It becomes 32 times of itself at the same rate of compound interest in **Dec-2014** a) 12 years b) 16 years c) 20 years d) 24 years 98. A sum of money doubles itself in 10 years. The number of years it would treble itself is : Feb-2007 (c) 20 years (a) 25 years (b) 15 years (d) None **Solution :** If S.I assumed 100 ------→200 ------→300 10 years 10 years Rule of 72 Doubles in $\frac{72}{11}$ years Total 20 years If C.I. assumed $\frac{72}{r} = 10$ years r = 7.2% Assume CI rate 7.2% Rule of 114 Triples in $\frac{114}{r} = \frac{114}{72} = 15.83$ years. The time by which a sum of money is 8 times of itself if it doubles itself in 15 years. June-**99**. 2009 (a) 42 years (b) 43 years (c) 45 years (d) 46 years **Solution :** 2 -----→ 1 -----→ -----→8 15 years 15 years 15 years Assuming Compound Interest Required time 15 + 15 + 15 = 45 years 100. A certain money doubles itself in 10 years when deposited on simple interest. It would triple itself in Nov-2018 a) 20 years b) 15 years c) 25 years d) 30 years **Answer**: **(a) Case - 1** Let Principal (P)=100Amount (A) = 200= ? R Т = 10 years S.I. = A - P= 200 - 100s= 100*SI* ×100 R $\frac{P \times T}{100 \times 100}$ 100 ×10 R = 10 % Case – II Let Principal (P) = 100Amount (A) = 300(T) = ?R = 10%S.I. = A - P= 300 - 100 = 200 $=\frac{S.I \times 100}{100}$ Т $P \times R$ 200×100 = 20 years 100×10 SHORT CUT 10 years 10 years С $A \rightarrow$ В

Total time = 10 years + 10 years = 20 years

WDV

101. The cost of Machinery is ₹ 1,25,000 If its useful life is estimated to be 20 years and the rate of depreciation of its cost is 10% p.a., then the scrap value of the Machinery is **Dec-2010** (Given that $(0.9)^{20} = 0.1215$) (a) 15.187 (c) 15,300 (b) 15,400 (d) 15,250 **Solution :** WDV = HC $(1 - r)^n = 125000(1 - 0.10)20 = 15187.5 = 125000 \times 0.1215 =$ 15187.5 102. The value of the furniture depreciates by 10% a year, if the present value of the furniture in an office is \gtrless 21,870, calculate the value of furniture 3 years ago Nov-2018 a. ₹ 30,000 b. ₹ 35,000 c. ₹ 40,000 d. ₹ 50,000 **103.** The value of scooter is ₹ 10,000 find its value after 7 years if rate of depreciation is 10% p.a. Nov-2019 (a) ₹4,782.96 (b) ₹ 4,278.69 (c) ₹ 42,079 (d) ₹ 42,000. **Answer:** (a) We know. $A = P[1 - \frac{R}{100}]^T$ Where A = Scrap Value P = Present Value $\mathbf{R} = \mathbf{R}$ ate of depreciation T = TimeHere. P = Rs. 10.000, R = 10%, T = 7 years A = 10,000 $[1 + \frac{10}{100})^7$ $A = 10,000 (0.9)^7$ A = 4782.96 So, value of scooter is Rs. 4782.96 after 7 years. **104.** Scrap value of a machine valued at ₹ 10,00,000, after 10 years within depreciation at 10% Nov-2019 p.a. : (a) ₹ 3,48,678.44 (b) ₹ 3,84,679.45 (c) ₹ 4,00,000 (d) ₹ 3,00,000 **Answer:**

(a) We know,

$$\mathbf{A} = \mathbf{P} \left(1 - \frac{R}{100} \right)^T$$

Where $A \Rightarrow$ scrap value after 't' years .

 $P \Rightarrow$ Present value $R \Rightarrow$ Rate of depreciation

Here, P = Rs. 10,00,000, R = 10%, T = 10 years

A = 10,00,000
$$\left(1 - \frac{10}{100}\right)^{10}$$
 = Rs. 348678.44

105. Present value of scooter is ₹ 7,290 if its value decrease every year by 10% then its value before 3 years is equal to : Nov-2019

A Applications	8.31	L	GBC>
(a) 10,000 Answer :	(b) 10,500	(c) 20,000	(d) 20,500
(a) Let the value	of the scooter be Rs. 2	X . before 3 years	
Before three	years,		
A (scrap val	ue after 3 year $) = Rs$.	7,290	
R = 10% (dep	Rate)		
T = 3 years			
$A = P\left(1 - \frac{R}{100}\right)$	$\left(\frac{1}{2}\right)^{T}$		
7,290 = X(1 -	$-\frac{10}{100}\Big)^3$		
X = Rs. 10,000 106. A machine worth ₹ 4,9 value would reduce to (a) 5 years 5 months (c) 5 years 7 months Answer:	90,740 is depreciated a ₹ 2,00,75? Dec	t 15% on its opening v 2022 (b) 5 years 6 m (d) 5 years 8 m	value each year. When its onths onths
(b) Here, original	value (P) = Rs. $4,90,7$	40	
Rate of depreci	ation (R) $= 15\%$		
Scrap value (A)	= Rs. 2,00,7	750	
Time (T)	= ?		
Scrap value after	'T' years		
$A=P\left(1-\frac{R}{100}\right)$	$\Big)^T$		
2,00,750 = 4,9	$0,740 \left(1 - \frac{15}{100}\right)^T$		
$\frac{2,00,750}{4,90,740} = (0.$	85) ^{<i>T</i>}		
0.4090 =(0.8	$(35)^T$		
$(0.85)^{5.5} = (0.85)^{5.5}$	85) ^{<i>T</i>}		
We get $T = 5.5$	years		
T = 5 yc	ear & 6 months		
	<u>ANNU</u>	ITY	

is 8% per annum compounded annually. Calculate future value of the annuity : Nov-2006 Given that $(1 + 0.08)^{10} = 2.15892500$] (a) ₹ 156,454.88 (b) ₹ 1,448,656.25 (c) ₹ 1,56,554.88 (d)None of these Solution : Ans:(a) FV of Annuity = A $\left[\frac{(1+r)^n - 1}{r}\right](1 + r)$ = 10,000 A $\left[\frac{(1+0.08)^{10} - 1}{0.08}\right](1 + r)$ = 14,4865.625 × (1 + 0.08) = 15,6454.875

8.32 **108.** Anshul's father wishes to have ₹ 75,000 in a bank account when his first college expenses begin. How much amount his father should deposit now at 6.5% compounded annually if Anshul is to start college in 8 years hence from now ? Feb-2008 (a) ₹ 45,317 (b) ₹ 46,317 (c) ₹ 55,317 (d) ₹48,317. **Solution :** He requires 75,000 after 8 years $FV = PV (1 + r)^n 75,000 = PV$ $(1 + 0.065)^8$ PV = 45317 109. Suppose your parent decides to open a PPF(Public Provident Fund) account in a bank towards your name with ₹ 10,000 every year starting from today for next 15 years. When you received and get 8.5% per annum interest rate compounded annually. What is the present value of the annuity? (Give answer in ₹ without any fraction.) **Dec-2015** (Given P (15.0.085) = 8.304236576) (a) ₹ 83,042 (b) ₹ 1,66,084 (c) ₹ 9,0101 (d) ₹ 8,30,423 Answer (c) Annual Installment (A) Rs. 1000 = 16 years = n R = 8.5% p.a. 8.5 i = 0.085_ 100 Present Value = A. P(n-1, I) + A= 10,000.P(15, 0.085) + 10,000= 83,042.36576 + 10,000= Rs. 93,042 **110.** Mr. X invest ₹ 10,000 every year starting from today for next: 10 years suppose interest rate is 8% per annual compounded annually. Calculate future value of the annuity. **May-2018** (a) ₹ 1,56,454.88 (b) ₹ 1,56,554.88 (c) ₹ 1,44,865.625 (d) None of these Answer: (a) Annual Installment (A) = 10,000R= 8% p.a.c.i. n = 10 years $A_{(n,1)} = ?$ $i = \frac{8}{100} =$ 0.08

Future Value of Annuity due

$$A_{(n.1)} = \frac{A}{1} [(1+i)^{n}] - 1](1+1)$$

= $\frac{10,000}{0.08} [(1+0.08)^{10} - 1](1+0.08)$
= $\frac{10,000}{0.08} [(1.08)^{10} - 1](1.08)$
= 1,56.454.88

111. How much amount is required to be invested every year so as to accumulate ₹ 3,00,000 at £ 10 : pounded annually at 10% the **May-2018** (a) ₹ c) ₹18,828.65 d) ₹18,882.65

the end of 10 years, if interest is compored
(a) ₹18,823.65 b) ₹18
Answer:
(a) Annuity(Annual Installment) =A
Future Value
$$A_{(n.i)} = 3,00,000$$

 $R = 10\%, n = 10$ years
 $I = \frac{R}{100} = \frac{10}{100} = 0.1$
 $A_{(n.i)} = \frac{A}{i} [1 + i)^n - 1]$
 $3,00,000 = \frac{A}{0.1} [(1 + 0.1)^{10} - 1]$
 $3.00,000 = \frac{A}{0.1} [1.1)^{10} - 1]$

112. Let a person invest a fixed sum at the end of each month in an account paying interest 12% per year compounded monthly. It the future value of this annuity after the 12th payment is ₹ 55,000 then the amount invested every month is? June-2019

(a) $\neq 4,8,37$ (b) $\neq 4,637$ (c) $\neq 4,337$ (d) $\neq 3,337$ Answer:

(c) Let
$$A = A$$

 $A_{(n,i)}$ =Rs. 55,000 R= $\frac{12\%}{12}$ p.a. = 1% per month

n=12, i=
$$\frac{R}{100} = \frac{1}{100} = 0.01$$

Future Value

Answer:

$$A_{(n,i)} = \frac{A}{i} [(1 + i)^{n} - 1]$$

$$55,000 = \frac{A}{0.01} [(1 + 0.01)^{12} - 1]$$

$$55,000 = \frac{A}{0.01} [(1.01)^{12} - 1]$$

$$55,000 = \frac{A}{0.01} [1.126825 - 1]$$

$$55,000 = A \times 12.6825$$

$$A = \frac{55,000}{12.6825}$$

$$A = 4336.68 = \text{Rs. } 4,337$$

- 113. A five year annuity due has periodic cash flow of ₹ 100 each year. If the interest rate is 8% the future value of this annuity is given by:
 Nov 2020
 - (a) $(\mathbf{E} 100) \times (\text{future value at rate 8\% for 5 years}) \times (0.08)$
 - (b) (₹ 100) × (future value at rate 8% for 5 years) × (1 0.08)
 - (c) (₹ 100) × (future value at rate 8% for 5 years) × (1 + 0.08)
 - (d) (₹ 100) × (future value at rate 8% for 5 years) × (1/0.08) **Answer :**

(c) The formula for Future Value of Annuity Due is :

$$FV = A \left[\frac{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1}{\frac{i}{NOCPPY}} \right] \times \left(1 + \frac{i}{NOCPPY}\right)$$

Therefore, clearly, we'll get Future Value of Annuity Due as follows :

(Rs. 100) × (Future Value at the rate 8% for 5 years) × (1+0.08)

114. A person decides to invest ₹ 1,25000 per year for the next five years in an annuity which gives 5% per annum compounded annually. What is the approx. future value? Nov - 2020 (use 1.05² = 1.2462, if needed)
(a) 1,59,535
(b) 6,90,500
(c) 5,90,704
(d) 3,59,535

(**b**) FV=A
$$\left[\frac{\left(1+\frac{i}{NOCPPY}\right)^{t\times NOCPPY}-1}{\frac{i}{NOCPPY}}\right]$$

FV=1,25,000 $\left[\frac{\left(1+\frac{0.5}{1}\right)^{5\times 1}-1}{\frac{0.5}{1}}\right]$
FV=1,25,000 $\left[\frac{(1.05)^{5}-1}{0.05}\right]$
FV=1,25,000 $\left[\frac{1.2762-1}{0.05}\right]$

Since option (b) is the closest, we'll mark option(b)

115. Which of the following statements is True? (assume that the yearly cash follow? Are identical for both annuities Nov - 2020

(a) The present value of annuity due is greater than the present value of ordinary annuity

(b) The present value of ordinary annuity is greater than the present value of annuity due

(c) The future value of an ordinary annuity is greater than the future value of an annuity due (d) The future value of an annuity due is equal to future value of an ordinary annuity.

Answer:

(a) The present value of an annuity due is greater than the present value of an ordinary

annuity.

116. Find the future value of annuity of ₹ 1,000 made annually for 7 year at interest rate of 14% compounded annually(Given that $1.14^7 = 2.5023$) Jan - 2021 (a) ₹ 10,730.7 (b) ₹ 5,365.35 (c) ₹ 8,756 (d) ₹ 9892.34

Answer:

(a) FV = A
$$\left[\frac{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1}{\frac{i}{NOCPPY}}\right]$$
FV = 1,000
$$\left[\frac{\left(1 + \frac{0.14}{1}\right)^{7 \times 1} - 1}{\frac{0.14}{1}}\right]$$
FV = 1,000
$$\left[\frac{(1.14)^7 - 1}{0.14}\right]$$
FV = 1,000
$$\left[\frac{25023 - 1}{0.14}\right]$$
= 10,730.7

117. The future value of annuity of ₹ 2,000 for 5 years at 5% compounded annually is given (in nearest ₹) as: July - 2021

(c) We have A = Rs. 2,000, t = 5 years, i = 0.05, NOCPPY = 1

$$FV = A\left[\left[\frac{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1}{\frac{i}{NOCPPY}}\right]\right]$$
$$FV = 2,000\left[\frac{\left(1 + \frac{0.05}{1}\right)^{5 \times 1} - 1}{\frac{0.05}{1}}\right] = 11,051$$

Since option (c) is the nearest, we'll mark option (c).

8.34

118. Mr. X wants to accumulated ₹ 50,00,000 at the end of 10 years. Then how much amount is required to be invested every year if interest is compounded annually at 10%? (Given that P(10,0.10) = 15.9374298) Dec-2021

(a) ₹ 3, 13, 726.87 (b) ₹ 4, 13, 726.87 (c) ₹ 3, 53, 726.87 (d) ₹ 4, 53, 726.87 Answer:

(a) Given FVAR = Rs. 50,00,000, t = 10 years, i = 0.10, NOCPPY = 1;

$$A = ?$$

$$FVAR = A \left[\frac{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1}{\frac{i}{NOCPPY}} \right]$$

$$\rightarrow A = \left[\frac{\frac{FVAR}{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1}}{\frac{i}{NOCPPY}} \right]$$

$$\rightarrow A = \left[\frac{\frac{50,00,000}{\left(1 + \frac{0.10}{1}\right)^{10 \times 1} - 1}}{\frac{0.10}{1}} \right]$$

$$\rightarrow A = \frac{50,00,000}{15.9374298} = 3,13,726.87$$

119. ₹ 200 is invested at the end of each month in an account paying interest 6% per year compounded monthly. What is the future value of this annuity after 10th payment? June 2022

(a) $\gtrless 2,044$ (b) 12,044 (c) $\gtrless 2,040$ (d) $\gtrless 12,000$ Answer:

(a) Given Annuity (A) = Rs. 200

n = 10, R = 6% p.a. $i = \frac{6}{12}$ % per month i = 0.005

Future Value A(n,i) = $\frac{A}{i} [(1+i)^n - 1]$ = $\frac{200}{0.005} [(1+0.005)^{10} - 1]$ = $\frac{200}{0.005} [1.0511 - 1]$ = 200×10.22

- = Rs. 2,044
- 120. Ankit invests ₹ 3,000 at the end of each quarter receiving interest @ 7% per annum for 5 years. What amount will be receive at the end of the period? June 2022

 (a) ₹ 17,200.20
 (b) ₹ 71,104.83
 (c) ₹ 73,204.83
 (d) None Answer:

(b) Given Annuity (A) =3000 R = $\frac{7}{4}$ % = 1.75% i = $\frac{R}{100}$ = $\frac{1.75}{100}$ 0.0175 n = 5 years

$$= 5 \times 4 \text{ Quarter}$$

$$= 20 \text{ Quarters}$$
Future Value $A_{(n,i)}$

$$= \frac{A}{i} [(1 + i)^n - 1]$$

$$= \frac{3,000}{0.0175} [(1 + 0.0175)^{20} - 1]$$

$$= \frac{3,000}{0.0175} [(1 + 0.0175)^{20} - 1]$$

$$= \frac{3,000}{0.0175} [(1.0175)^{20} - 1]$$

$$= 71,104.83$$

- 121. A company establishes a sinking fund to provide for the payment ₹ 2,00,000 debt maturity in 20 years contribution to the fund are to be made at the end of every year. Find amount of each deposit of interest is 10% per annum? June 2022

 (a) ₹ 3,592.11
 (b) ₹ 3,492.11
 (c) ₹ 3,392.11
 (d) None
 - (**b**) Given FVAR = 2,00,000; t = 20; i = 0.10; NOCPPY = 1; A =?

$$FVAR = A \left[\frac{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1}{\frac{i}{NOCPPY}} \right]$$
$$\Rightarrow A = \frac{FVAR}{\left[\frac{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY}}{\frac{i}{NOCPPY}}\right]}$$
$$\Rightarrow A = \frac{2,00,000}{\left[\frac{\left(1 + \frac{0.10}{1}\right)^{20 \times 1} - 1}{\frac{0.10}{1}}\right]} = Rs. 3,491.92$$

122. How much amount is required to be invested every year so as to accumulate ₹ 5,00,000 at the end of 12 years if interest is compounded annually at 10% {Where A (12,0.1) = 21.384284}
 Dec 2022

 (a) ₹ 23381.65
 (b) ₹ 24385.85
 (c) ₹ 26381.65
 (d) ₹ 28362.75

```
Answer:
```

(a) Given,

Future value $A_{(n,i)} = \text{Rs.5,00,000}$ Rate (R) = 10% n = 12 years i = $\frac{R}{100} = \frac{10}{100} = 0.1$ Annuity(A) = ? Future value $A_{(n,i)} = \frac{A}{i} [(1+i)^n - 1]$ 5,00,000 = $\frac{A}{0.1} [(1+0.1)^{12} - 1]$ 5,00,000 = $\frac{A}{0.1} [(1.1)^{12} - 1]$ 5,00,000 = $\frac{A}{0.1} \times 2.1384284$

 $5,00,000 = A \times 21.384284$ A = $\frac{5,00,000}{2}$

$$A = \frac{1}{21.384284}$$

$$A = 23381.65$$

123. Raju invests ₹ 20,000 every year in a deposit scheme starting from today for next 12 years. Assuming that rate on this deposit is 7% per annum compounded annually. What will be the future value of this annuity? Given that (1+0.07)12 = 2.25219159 Dec 2022

(a) ₹ 540,526
(b) ₹ 382,813
(c) ₹ 643,483
(d) ₹ 357,769

Answer:

(**b**) Here, annual instalment (A) = Rs.
$$20,000$$

n = 12
R = 7% p.a.
i =
$$\frac{7}{100} = 0.07$$

Future Value $A_{(n,i)} = ?$

We know that:

Future Value
$$A_{(n,i)} = \frac{A}{i} [(1+i)^n - 1](1+i)$$

 $= \frac{20,000}{0.07} [(1+0.07)^{12} - 1](1+0.07)$
 $= \frac{20,000}{0.07} [(1.07)^{12} - 1](1.07)$
 $= \frac{20,000}{0.07} [2.25219159 - 1](1.07)$
 $= \frac{20,000}{0.07} \times 1.25219159 \times 1.07$
 $A_{(n,i)} = 3,82,813 \text{ (approx)}$

124. Mr. A invested ₹ 10,000 every year for next 3 years at the interest rate of 8 percent per annum compounded annually. What is future value of the annuity? Dec 2022

(a) ₹ 32,644
(b) ₹ 32,464
(c) ₹ 34,264
(d) ₹ 36,442

Answer:

(b) Annual Installment (A) = Rs.10,000

T = 3 years
R = 8 % p.a.
i =
$$\frac{8}{100} = 0.08$$

Future Value:

$$A_{(n.i)} = \frac{A}{i} [(1+i)^n - 1]$$

= $\frac{10,000}{0.08} [(1+0.08)^3 - 1]$
= $\frac{10,000}{0.08} [(1.08)^3 - 1]$
= Rs 32 464

125. ₹ 5,000 is invested every month end in an account paying interest @ 12% per annum compounded monthly. What is the future value of this annuity just after making 11th payment ? (Given that (1.01) = 1.1156)
 Dec 2022

 (a) ₹ 57,800
 (b) ₹ 56,100
 (c) 56,800
 (d) 57,100

Answer:

(a) Here, annual investment (A) = Rs. 5,000

$$(R) = \frac{12}{12}\% = 1\%$$
$$I = \frac{R}{100}\% = \frac{1}{100} = 0.01$$
$$n = 11$$

Future value

$$A_{(n,i)} = \frac{A}{i} = [(1+i)^n - 1]$$

= $\frac{5,000}{0.01} [(1+0.01)^{11} - 1]$
= $\frac{5,000}{0.01} \times [(1.01)^{11} - 1]$
= $\frac{5,000}{0.01} \times [1.1156 - 1]$
= $\frac{5,000}{0.01} \times 0.1156$
= Rs. 57,800

- **126.** Sinking fund factor is the reciprocal of: **Dec 2022**
 - (a) Present value interest factor of a single cash flow
 - (b) Present value interest factor of an annuity
 - (c) future value interest factor of an annuity
 - (d) Future value interest factor of a single cash flow

Answer:

(b) Sinking fund factor is the reciprocal of present value interest factor of an annuity.

LOAN

- 127. ₹ 2,500 is paid every year for 10 years to pay off a loan. What is the loan amount if interest rate be 14% per annum compounded annually? Nov 2020

 (a) ₹ 15,847.90
 (b) ₹ 13,040.27
 (c) ₹ 14,674.21
 (d) ₹ 16,345.11
 - Answer:
 - (b) We need to find out the Present Value of Annuity Regular.

$$PV = A \left[\frac{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1}{\frac{i}{NOCPPY} \times \left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY}} \right]$$
$$PV = 2,500 \left[\frac{\left(1 + \frac{0.14}{1}\right)^{10 \times 1} - 1}{\frac{0.14}{1} \times \left(1 + \frac{0.14}{1}\right)^{10 \times 1}} \right]$$

= 13,040.28

128. A loan of ₹ 1,02,00 is to be paid back in two equal annual instalments. If the rate of interest charged (in ₹) under this installment plan is: July – 2021

(a) 6,160
(b) 8,120
(c) 5,980
(d) 7,560

Answer :

(a) We have
$$PV = 1,02,000$$
; $t = 2$ years; NOCPPY = 1; $i = 0.04$; A =?

We know that PV = A
$$\left[\frac{\left(1+\frac{i}{NOCPPY}\right)^{t\times NOCPPY}-1}{\frac{i}{NOCPPY}\times\left(1+\frac{i}{NOCPPY}\right)^{t\times NOCPPY}}\right]$$

Therefore,

$$A = \frac{PV}{\left[\frac{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1}{\frac{i}{NOCPPY}\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY}}\right]} = \frac{1,02,00}{\left[\frac{\left(1 + \frac{0.04}{1}\right)^{2 \times 1}}{\frac{0.04}{1} \times \left(1 + \frac{0.04}{1}\right)^{2 \times 1}}\right]} = 54,080$$

Therefore, total amount paid = 54,080 + 54,080 = 1,08,160

Interest = 1,08,160 - 1,02,000 = 6,160

129. If a person bought a house by paying ₹ 45,00,000 down payment and ₹ 80,000 at the end of each year till the perpetuity. Assuming the rate of interest as 16% the present value of house (in ₹) is given as: July - 2021

(a) 47,00,000
(b) 45,00,000
(c) 57,80,000
(d) 50,000

(d) Value of House = Down Payment + Present Value of Perpetuity

Value of House = $45,00,000 + \frac{80,000}{0.16}$

Value of House = 45,00,000 + 5,00,000 = 50,00,000

- 130. ₹ 2,500 is paid every year for 10 years to pay off a loan. What is the loan amount if interest rate be 14% per annum compounded annually? June 2022

 (a) 15,841.90
 (b) ₹ 13,040.27
 (c) ₹ 14,674.21
 (d) ₹ 14,010.90
- (a) 15,011.90
 (b) ₹ 1,00,000 @ 8% for 5 year. What amount will she pay if she wants to pay the whole amount in five equal installments? June 2022
 (a) ₹ 25,045.63
 (b) ₹ 26,045.68
 (c) ₹ 28,045.50
 (d) None Answer:

$$i = \frac{8}{100} = 0.08$$

$$A = ?, n = 5$$

Present Value

$$V = \frac{A}{i} \left[\frac{(1+i)^{n}-1}{(1+i)^{n}} \right]$$

$$100000 = \frac{A}{0.08} \left[\frac{(1+0.008)^{n}-1}{(1+0.008)^{n}} \right]$$

$$100000 \times 0.08 = A \left[\frac{(1.08)^{5}-1}{(1.08)^{5}} \right]$$

$$8000 = \frac{A \times 0.469328}{1.469328}$$

$$8000 = A \times 0.319417$$

$$A = \frac{8,000}{0.319417}$$

$$= 25,045.63$$

PERPETUITY

132. Determine the present value of perpetuity of ₹ 50,000 per month @ rate of interest 12% p.a. is ______
June-2019

(a) ₹ 45,00,000	(b) ₹ 50,00,000	(c) ₹ 55,00,000	(d) ₹60,00,000
-----------------	------------------------	-----------------	----------------

8.40

Answer:

(b) Given, Annual instalment (A) = Rs. 50,000

$$R = \frac{12}{12}\% \text{ monthly}$$

= 1% monthly
$$I = \frac{R}{100} = \frac{1}{100} = 0.01$$

For Perpetuity n = \propto
$$V = \frac{A}{i} [1 - (1 + i)^{-n}]$$

$$V = \frac{A}{i} [1 - (1 + i)^{-\infty}]$$

$$V = \frac{A}{i} [...(1 + i)^{-\infty} = 0]$$

$$V = \frac{50,000}{0.01} = \text{Rs. } 50,00,000$$

133. Determine the present value of perpetuity ₹ 10 per month for infinite period at an effective rate of interest of 14% p.a.? Nov - 2020

(a) ₹ 657
(b) ₹ 757
(c) ₹ 857
(d) ₹ 957

134. Assuming that the discount rate is 7% p.a. how much would pay to receive ₹ 200 growing a 5% annually for ever? Jan - 2021

(a)
$$\gtrless 2,500$$
 (b) $\gtrless 5,000$ (c) $\gtrless 7,500$ (d) $\gtrless 10,000$ Answer:

(d)
$$PV = \frac{A}{i-g} = \frac{200}{0.07 - 0.05} = 10,000$$

135. If discount rate is 14% per annum, then hour much a company has to pay to receive ₹ 280 growing at 9% annually forever? July - 2021

(a) ₹ 5,600
(b) ₹ 2,800
(c) 1,400
(d) 4,200

Answer :

(a) We have A = 280; i = 0.14; g = 0.09; PV = ?

We know that $P = \frac{A}{i-g}$

$$P = \frac{280}{0.14 - 0.09} = 5,600$$

136. Assuming that the discount rate is 7% p.a. how much would you pay to receive ₹ 200, growing at 5% annually for ever? June 2022

(a) ₹ 2,500
(b) ₹ 5,000
(c) ₹ 7,500
(d) ₹ 10,000

IIISWCI .

(d) Discount rate (i) = 7% p.a. = 0.07

Growing rate (g) = 5 % Annually = 0.05

(R) = Rs. 200

Present value of growing perpetuity

$$PVA = \frac{R}{i-g}$$
$$= \frac{200}{0.07 - 0.05}$$

= 20,000 002

= 10,000

NPV

137. If the cost of capital be 12% per annual, then the net present value (in nearest \overline{x}) from the given cash flow is given as: **July – 2021**

	Years	0	1	2	3	
	Operating profit (in Lakh ₹)	(100)	60	40	50	
1048	(b) 34185		(c) 5104	8	(d) 2	4187

Answer:

(a) 3

(c) Net Present Value = Present Value of Inflows – Present Value of

Outflows

Present Value of Inflows = $\frac{60,000}{(1.12)} + \frac{40,000}{(1.12)^2} + \frac{50,000}{(1.12)^3} = 1,21,048$

Present Value of Outflows = 1.00,000

Therefore, Net Present Value = 1,21,048 - 1,00,000 = Rs. 21,048

LEASE

- **138.** A person wants to lease out a machine costing ₹ 5,00,000 for a 10 year period. It has fixed a rental of ₹51,272 per annum payable annually starting from the end of first year. Suppose rate of interest is 10% per annum, compounded annually on which money can be invested. To whom this agreement is favourable? June-2019
 - (a) Favour for Lessee

(c) Not for both

(b) Favour for Lessor (d) Can't be determined

Answer:

(a) Let's analyse this problem from the point of view of the lessor.

If he sells the machine today ,he would receive Rs. 5,00,000.

If he leases this machine out, he would receive Rs. 51,272 per year for 10 years.

 $PV = Annuity \times Sum of Discounting Factory$

We have –

Annuity (A) = Rs. 51,272

I = 0.10

t = 10 years

No. of Conversion Periods Per Year (NOCPPY)=1

i/NOCPPY=0.10/1=0.10

 $n=t \times NOCPPY = 10 \times 1 = 10$

Discount Rate = 0.10

Factor of Discount Rate =1.10

PV = Annuity × Sum of Discounting Factors

 $= \text{Annuity} \frac{(\text{Factor of Discount Rate})^n - 1}{\text{Discount Rate} \times (\text{Factor of Discount Rate})^n}$

$$= 51,272 \times \frac{(1.10)^{10} - 1}{0.10 \times (1.10)^{10}} = \text{Rs. } 3,15,044$$

Clearly, leasing is not favourable to lessor. If the lessee purchases this machine today,

his cash outflow

would be Rs.5,00,000.

If he leases it, his cash outflow every year would be Rs.51,272

PV=Rs. 3,15,044

Therefore clearly, the leases is favourable to lessee

139. ABC Ltd. wants to lease out an asset costing ₹ 3,60,000 for a five year period. It has a fixed rental of ₹ 1,05,000, per annum payable annually starting from the end of first year. Suppose rate of interest is 14% per annum compounded annually on which money can be invested by the company. Is this agreement favourable to the company. June 2022
(a) No.

Answer:

(a)The agreement would be favourable to the company if the

Present value of lease rentals is more than the cost.

To calculate the present value of lease rentals, we have A=

Rs. 1,05,000 ; i = 0.14 ; NOCPPY =1; t = 5 years .

$$PVAR = A \left[\frac{\left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY} - 1}{\frac{i}{NOCPPY} \times \left(1 + \frac{i}{NOCPPY}\right)^{t \times NOCPPY}} \right]$$

$$\Rightarrow PVAR = 1,05,000 \left[\frac{\left(1 + \frac{0.14}{1}\right)^{5 \times 1} - 1}{\frac{0.14}{1} \times \left(1 + \frac{0.14}{1}\right)^{5 \times 1}} \right] = 3,60,473$$

Since the present value of lease rentals is more than the cost,

leasing is preferable.

140. If ₹ 1,000 be invested at interest at interest rate of 5% and the interest be added to the principal every 10 years, than the number of years in which it will amount to ₹ 2,000 is :
 Aug 2007, May 2018

(a) 16 ²/₃ Year
(b) 6 ¹/₄ Year
(c) 16 Year
(d) 6 ²/₃ Year

141. A person borrows ₹ 5,000 for 2 years at 4% per annual simple interest. He immediately lends to another person at 6¹/₄%. Per annual for 2 years find his gain in the transaction for year: May 2018

(a) ₹ 112.50
(b) ₹ 225
(c) ₹ 125
(d) ₹ 107.50

MISCELLANEOUS QUESTIONS

(d) If interest is compounded Quarterly

$$R = \frac{10}{4}\% = 2.5\%$$

T = 1 years = 1 x 4 Quarter = 4 Quarter Effective Rates of Interest

$$= [(1.025)^4 - 1] \times 100$$

= [1.1038 - 1] × 100

$$= [1.1038 - 1] \times = 0.1038 \times 100$$

143. A car is available for ₹ 4,98,200 cash payment on ₹ 60,000 cash down payment followed by three equal annual installment of the rate of interest charged is 14% per annum compounded yearly . these total interest changed is the instalment plans is (Given P (3,0.14)=2.32163) June 2023

(a) ₹1,46,314 (b) ₹1,46,137 (c) ₹1,28,040 (d) ₹1,58,040
Answer :
(e) Total Cost of Car = 4,98,200
Down Payment = 60,000
Remaining Balance = 4,38,200
A = ?
R = 14 %
i =
$$\frac{14}{100} = 0.14$$

No. of Installment n = 3
Present Value V = A.P (n,i)
4,38,200 = A.P (3, 0.14)
4,38,200 = A ≥ 2,32163
A = $\frac{438200}{232163}$
A = 1,88,746.7
Total money to be paid for car
= 3 × 1,88,746.7 + 60,000
= 6,26,240
Interest to be paid = 6,26,240 - 4,98,200 = 1,28,040
144. If the discount rate is 10% per annum . How much amount would you pay to receive
₹2,500 growing at 8% annually forever ? June 2023
(a) ₹1,25,000 (b) ₹2,50,000 (c) ₹1,50,000 (d) ₹2,00,000
Answer :
(a) Receive Amount (R) = 2,500
Discount rate ig = $\frac{10}{100}$ = 0.10
Growing rate ig = $\frac{8}{100}$ = 0.08
Then
PVA = $\frac{R}{t_a t_{ig}}$
= $\frac{2500}{0.100}$
= 1,25,000
145. The compound interest on ₹15,625 for 9 months at 16% per annum compounded quarterly
is June 2023

(a)₹1,851 (b)₹1,941 (c)₹1,951 (d)₹1,961 **Answer :** (c) P = Rs. 15,625, R = 16 % p.a., T = 9 month

If interest is compound quarters

$$R = \frac{R}{4}\% = \frac{16}{4}\% = 4\%$$

$$T = 9 \text{ month} = \frac{9}{12} \text{ years} = \frac{9}{12} \times 4 \text{ quarters} = 3 \text{ quarters}$$

$$C.I = P \left[\left(1 + \frac{R}{100} \right)^T - 1 \right]$$

$$= 15,625 \left[\left(1 + \frac{4}{100} \right)^3 - 1 \right]$$

$$= 15,625 \left[(1.04)^3 - 1 \right]$$

$$= 15,625 \left[(1.124864 - 1) \right]$$

$$= 15,625 \times 0.124864$$

$$= 1.951$$

146. Mr. Sharad got his retirement benefit amounting to ₹50,00,000 . He wants to receiver a fixed monthly sum of amount for his rest of life , starting after one month and there after he want to pass on the same to future generation . He expects to earn an interest of 9% compounded annually .Determine how much perpetuity amount he will receive every month ? June 2023

(a)₹9,500 (b)₹38,500 (c)₹37,500 (d)₹36,600 Answer : (c) Present Value (V) = 50,00,000 A = ? $n = \infty$ (for perpetuity) R = 9 % p.a. then $i = \frac{9}{12 \times 100} = 0.0075$ Present value of perpetuity $V = \frac{A}{i}$ $50,00,000 = \frac{A}{0.0075}$ $A = 50,00,000 \times 0.0075$ A = 37,500

147. Jonny wants to have ₹2,00,000 in his saving account after three years . The rate of interest offered by bank is 8% per annum compounded annually . How much should he invest today to achieve his target amount ?

June 2023 (a) $\mp 1.47.480.10$ (b)

(a) ₹1,47,489.10 (b) ₹1,58,766.44 (c) ₹1,71,035.59 (d) ₹1,84,417.96 **Answer :**

(b) Given Amount (A) = 2,00,000, R = 8 % p.a., T = 3 years, P = ?

We know that A =P
$$\left(1 + \frac{R}{100}\right)^{T}$$

2,00,000 = P $\left(1 + \frac{8}{100}\right)^{3}$
2,00,000 = P $(1.08)^{3}$
P = $\frac{200000}{(1.08)^{3}} = \frac{200000}{1.259712} = 1,58,766.44$

148. Suppose you have decided to make a systematic investment plan (SIP) inn a mutual fund with ₹1,00,000 every year from today for next 10 years at the rate of 10% per annum compounded annually . What is the future value of this annuity ? Given 1.1¹⁰=2.59374 June 2023

(a) $\gtrless 17,35,114$ (b) $\gtrless 17,53,411$ (c) $\gtrless 17,35,411$ (d) $\gtrless 17,53,114$ Answer :

(d) Given Annual Installment (A) = 1,00,000

n = 10 years
R = 10 % p.a.c. l
i =
$$\frac{10}{100} = 0.1$$

Future value of Annuity due

$$A(n,i) = \frac{A}{i} [(1+i)^n - 1](1+i)$$

	=	$\frac{100000}{01}[(1 +$	$(0.1)^{10} - 1](1 + 0.1)$	
	=	$\frac{100000}{100000}$ [(1.1)	(10 - 1)(1.1)	
	_	0.1 + 0.0 = 0.01	50374 - 11[1 1]	
	-	10,00,000[2.	150274 - 1	
	=	= 10,00,000 ×	1.59374 × 1.1	
	=	= Rs. 17,53,11	.4	
149.	A machine depreciate	es at 10% of :	its value at the beginning of a yea	r. The cost and scrap
	value realized at the	time of sale	being ₹23,240 and ₹9,000 respect	ively. For how many
	years the machine wa	s put to use ?	-	
	June 2023	1		
	(a) 7	(b)8	(c)9	(d)10
	Answer :			
	(c) Original cost	of machine (P) $= 23,240$	
	Scrap value	of machine	(A) = 9,000	
	Rate of dep	reciation	R = 10 %	
			T =?	
	А	$= P\left(1 - \frac{R}{100}\right)$		
	9,000	= 23,240 (1	$\left(1 - \frac{10}{100}\right)^T$	
	<u>9,000</u> 23,240	$=(1-0.1)^{T}$	2007	
	0.38726	$=(0.9)^{T}$		
	T	= 9 years (a	npex)	
150	Mr Ram invested a to	otal of one lak	ch in two bags for the fixed parcel	The first bank fields

150. Mr. Ram invested a total of one lakh in two bags for the fixed parcel .The first bank fields as interest of 9% per annum and 2nd bank field 11% per annum . If the toral interest at the end year is 9.75% per annum . then the annum . then the amount invested in these bank respectively? June 2023

(a) ₹52,500,₹47,500 (b) ₹62,500,₹37,500 (c) ₹57,500,₹42,500 (d) ₹67,500,₹32,500 **Answer**:

(b)

Total Money Ram invested

151. A company wants to replace its existing warm out machinery in 10 years the expected cost of machine would be 10 lakh . If the management create a sinking fund . How much

provision needs to be made each year. Which can care at the rate of 10% compound annually . (Given A(10,0.1)=15.937425 June 2023 (a) ₹74,625 (b) ₹72,514 (c) ₹62,745 (d) ₹67,245 Answer: (c) Here A = 10,00,000= 15.937425A(10.0.1) n = 10Ρ = ? For sinking find A = P.A(n,i)10,00,000 = P.A(10,0.1) $10.00.000 = P \times 15.937425$ $P = \frac{10,00,000}{15.937425} = Rs. \ 62,745$ **152.** The difference between compound interest and simple interest on a certain sum of money invest for three years at 6% per annum is 11016. Then principal is . June 2023 (a) ₹3,000 (b) ₹3,700 (c) ₹12,000 (d) ₹10,000 Answer: C.I – S.I= 110.16 (d) Given Т = 3 years R = 6%Р = ? C.I-S.I = P $\left[\left(\frac{R}{100}\right)^3 + 3\left(\frac{R}{100}\right)^2\right]$ 110.16 = $P\left[\left(\frac{6}{100}\right)^3 + 3\left(\frac{6}{100}\right)^2\right]$ 110.16 = P $[(0.06)^3 + 3(0 \cdot 06)^2]$ 110.16 = P $[0.000216 + 3 \times 0.0036]$ 110.16 = P [0.000216 + 0.0108]110.16 = P[0.011016] $= \frac{110.0}{110.16}$ Ρ 0.011016 Р = Rs. 10,000 **153.** The population of a town increases every year by 2% of the population of beginning of the year. The approximate no. of years by which the total increase of population will be 40% is : June 2023 (a) 15 years (d) 20 years (b) 17 years (c) 19 years Answer: (**b**) Let Present Population of a town (P) =100 Population after 'T' years (A) = 100 + 40= 140Increase Rate % R = 2%T = ? $= P \left(1 + \frac{R}{100}\right)^T$ Α $=100\left(1+\frac{2}{100}\right)^{T}$ 140 140 $=(1.02)^{T}$ 100

1.4 $= (1.02)^T$ T = 17 years

154. Govinda's mother decides to gift him ₹50,000 every year starting from today for the next 5 year. Govinda deposits this amount in a bank . As and when he receives and gets 10% per annum interest rate compounded annually .What is the present value of this annuity? Given P(4,0.10)=3.16987 June 2023

(a) ₹2,80,493.5
(b) ₹2,08,993.5
(c) ₹2,08,943.5
(d) ₹2,58,493.5

Answer: (c) Here, A=Rs.50,000, R=10% p.a, $i = \frac{10}{100} = 0.1$, n =4 Present Value V = $A \cdot P_{(n,i)} + A$ $= 50,000 \times P_{(4,0,10)} + 50,000$ $= 50.000 \times 3.16987 + 50.000$ = 1.58,943.5 + 50,000 = 20,8943.5**155.** Mr. Paul invested ₹ 1,00,000 in a mutual fund scheme . She got a dividend of ₹ 10,000 for first year ₹ 12,000 for second year , ₹16,000 is compounded Annual Growth Rate (CAGR) on dividend return ? June 2023 (a) 20.38% (b) 18.59% (c) 16.36% (d) 15.89% Answer: (a) Initial Dividend (Vo) = 10000Final Dividend (Vn) = 21000Difference b/w time . $(t_n - t_o) = 5 - 1 = 4$ C.A.G.R = $\left[\left(\frac{V_n}{V_o} \right)^{\frac{1}{T_n - T_o}} - 1 \right] \times 100$ $= \left[\left(\frac{21000}{10000} \right)^{\frac{1}{4}} - 1 \right] \times 100$ $= \left[(2.1)^{\frac{1}{4}} - 1 \right] \times 100$ $= [1.2038 - 1] \times 100$ $= 0.2038 \times 100$ =20.38% **156.** How much amount is required to be invested every year so as to accumulate ₹ 30,000 at the end of 10 years if the interest compounded annually at 10%. Given A (100.1) =15.9374. dec 2023 (a) ₹ 1882.36 (b) ₹ 1828.30 (c) ₹ 1832.65 (d) ₹ 1853.65 Answer: (d) Given A = Rs.30,000, R = 10% and n = 10 years $i = \frac{R}{100} = \frac{10}{100} = 0.1$ **P** = ? $\mathbf{A} = \mathbf{P} \times A_{(n,i)}$ Rs. $30,000 = P \times A_{(10,0.1)}$ Rs. $30,000 = P \times 15.9374$ $P = \frac{30,000}{15.9374}$ P = Rs. 1.882.36**157.** Suppose Mr. X invested ₹ 5,000 every year starting from today in mutual fund for next 10 year. Assuming that average return compounded annually is at 18% per annum. What is future value ? dec 2023 (a) ₹ 1,83,677.68 (b) ₹ 1,38,678.85 (c) ₹ 1.83.776.53 (d) ₹ 1,38,774.54 Answer: (d) Annual Installment (A) = Rs. 5,000n = 10 years $R = 18\% \text{ p.a.c.i} \\ i = \frac{18}{100} = 0.18$ Future value of annuity due $A_{(n,i)} = \frac{A}{i} [(1+i)^n - 1](1+i)$ $=\frac{5,000}{0.18}[(1+0.18)^{10}-1](1+0.18)$ $=\frac{5,000}{0.18}[(1.18)^{10}-1](1.18)$ = 1.38.774.55

GBC>>>

158. A person wants to open a shop have two options to acquire a commercial space for ₹
12,00,000. If person can horrow money at 14% compounded per annum. Which alternate is
most suitable ? Given P(100.14) = 5.21611 dec 2023
(a) Leasing (b) Purchase (c) Can't say (d) Data insufficient
Answer:
(a) Present value V = A ×
$$P_{(n,i)}$$

= 2,00,000 × 5.21611
= 10,43,222
Which is less than purchase price. Hence leasing is preferable.
159. What is the effective rate of intertest when principal amount of ₹ 50,000 deposited in a
nationalized bank for one year, corresponding to a nominal rate interest 8% per annum
compounded quarterly, given (1.02)[±]-1.0824. dec 2023
(a) 10.38 % (b) 8.08 % (c) 8.16 % (d) 8.24 %
Answer :
(d) R = $\frac{9\%}{4}$ = 2%(for compound quarterly)
T = 1 year = 1 × 4 quarter = 4 quarter
Effective Rate (E) = $\left[\left(1 + \frac{8}{100}\right)^T - 1\right] \times 100\%$
= $\left[\left(1 + \frac{2}{100}\right)^4 - 1\right] \times 100\%$
= $\left[\left(1 + \frac{2}{100}\right)^4 - 1\right] \times 100\%$
= $\left[(0.824 - 1) \times 100\%$
= $0.0824 \times 100\%$
= 8.24%
160. Manoj invests ₹ 12,000 at 6% per annum sinple interest to obtain a total amount of ₹
14,880. What is the time for which the amount was invested? dec 2023
(a) 3 years (b) 4 years (c) 2 years (d) 5 years
Answer:
(b) P = 12,000, R = 6%, A= Rs. 14,880,T = ?
A = P + S.1
14,880 - 12,000 = 2.880
T = $\frac{5,8100}{12,4000} = \frac{2,480}{12,4000} = 2.880$
T = $\frac{5,8100}{12,4000} = \frac{2,480}{12,4000} = 49ears$
161. Mr. X makes a deposit of ₹ 50,000 in the bank for a period of $2\frac{1}{2}$ years. If the rate of
interest is 12% per annum compounded half yearly,then the maturity value of the money
deposited by Mr. X is : [Where (1.06)⁵ = 1.3382,] dec 2023
(a) ₹ 66,910 (b) ₹ 66,123 (c) ₹ 67,925 (d) ₹ 65,550
Answer:
(a) Here, P= Rs.50,000 (R = $\frac{12}{2}\%} = 6\%, T = 2.5 years
= 2.5 × 2 half yearly
Anowut after T' years
 $A = P(1 + \frac{8}{10})^T$
 $A = Rs. 50,000 (1.06)^5
= Rs. 50,000 (1.06)^5
= Rs. 50,000 (1.06)^5$$

162. What will be the future value of an annuity of ₹ 2,500 made annually for 12 years at intertest rate of 5% compounded annually if $(1.05)^{12} = 1.7958$ dec 2023 (b) ₹ 39,790.00 (a) ₹ 37,588.58 (c) ₹ 40,873.13 (d) ₹ 42,603.68 **Answer**: (b) Given A = Rs. 2,500, n = 12, R = 5% p.a. c-1 $i=\frac{5}{100}=0.05$ Future value, $A_{(n,i)} = \frac{A}{i} [(1+i)^n - 1]$ = $\frac{2,500}{0.05} [(1+0.05)^{12} - 1]$ = $\frac{2,500}{0.05} [(1.05)^{12} - 1]$ = $\frac{2,500}{0.05} [1.7958 - 1]$ = $\frac{2,500}{0.05} \times 0.7958$ = Rs. 39,790 **163.** If the initial investment of ₹ 4,00,000 becomes ₹ 6,00,000 in 24 months, then the Compound Annual Growth Rate (CAGR) is : dec 2023 (b) 22.4 % (c)19.46% (d)14.47%

(a) 30.33% Answer :

(

b) Initial Revenue
$$(V_1) = 4,00,000$$

Final Revenue $(V_2) = 6,00,000$
time $(t_2 - t_1) = 24$ months =2years
C.A.G.R. = $\left[\left(\frac{V_2}{V_1}\right)^{\frac{1}{t_2 - t_1}} - 1\right] \times 100\%$
 $= \left[\left(\frac{6,00,000}{4,00,000}\right)^{\frac{1}{2}} - 1\right] \times 100\%$
 $= \left[(1.5)^{\frac{1}{2}} - 1\right] \times 100\% = 22.4\%$

164. Mr. X invests in an annuity immediately that promises annual payments of ₹ 50,000 for the next 16 years. If the interest rate is 6% compounded annually then the approximate present value of this annuity is ——— where (1.06)¹⁵ = 2.3965. dec 2023

(a) ₹ 5,51,217.75 (b) ₹ 5,75,900.00 (c) ₹ 5,05,288.08 (d) ₹ 5,35,612.45 Answer :

(d) Given A = Rs. 50,000, n = 16 years, R = 6%

$$i = \frac{6}{100} = 0.06$$
Present value of Annuity due

$$V = \frac{A}{i} \left[\frac{(1+i)^n - 1}{(1+i)^n} \right] + A$$

$$= \frac{Rs.50,000}{0.6} \left[\frac{(1+0.06)^{16} - 1}{(1+0.06)^{16}} \right] + 50,000$$

$$= \frac{Rs.50,000}{0.66} \left[\frac{2.3965 - 1}{2.3965} \right] + 50,000$$

$$= Rs. 5,35,604.005 \text{ (Approx)}$$
165. A machine costing ₹ 1,00,000 has useful life of 10 years. If the rate of depreciation is 12%,
what is scrap value of the machine at the end of life ?Given (0.88)^{10} = 0.27850 dec 2023
(a) ₹ 25,850 (b) ₹ 26,850 (c) ₹ 27,850 (d) ₹ 28,850
Answer :
(c) Original value (P) = Rs. 1,00,000
(T) = 10 years
Rate of depreciation (R) = 12 % p.a.
Scrap value after 'T' years

166. Computer the compound interest on \gtrless 6,000 for $1\frac{1}{4}$ years at 8% per annum. Interest will be

compounded quarterly. Dec 2023 (a) 642 (b) 630.78 (c) 634.68 **Answer :** (d) Given , P= Rs. 6,000 , R = $\frac{8}{4}\%$ = 2%

$$T = 1\frac{1}{4} \text{ years}$$

$$T = \frac{1}{4} \text{ years}$$

$$T = \frac{5}{4} \times 4 \quad \text{Quarter}$$

$$T = 5 \text{ Quarter}$$

$$C.I = P\left[\left(1 + \frac{R}{100}\right)^{T} - 1\right]$$

$$= 6,000 \quad \left[\left(1 + \frac{2}{100}\right)^{5} - 1\right]$$

$$= 6,000 \quad \left[(1.02)^{5} - 1\right]$$

$$= 624.48$$

167. The population of a city increases at the rate of 5% every year. What will be the population of the city in the year 2023, if its population in 2021 was 1,00,000 ? dec 2023
(a) 1,05,500
(b) 1,10,250
(c) 1,15,240
(d) 1,20,550

Answer :

(b) Given present Population (P) = 1,00,000 Increased Rate % (R) = 5% Population after 'T' year (A) = ? Time (T) = 2023 - 2021 = 2 years We know that $A = P\left(1 + \frac{R}{100}\right)^{T}$ $= 1,00,000 \left(1 + \frac{5}{100}\right)^{2}$

- = Rs. 1,10,250
- 168. Mr. XYZ invested ₹ 60,000 in a nationalized bank in the form of fixed deposit at the rate of 7.5% per annum simple interest rate. He received ₹ 73,500 after the end of the term of fixed deposit. Calculate the period for which ₹ 60,000 was invested in fixed deposit. dec 2023

(a) 3years (b) 3.5 years (c) 4 years (d) 4.5 years Answer : (a) Here, P = Rs. 60,000, R=7.5% p.a.; S.I A = Rs.73,500, T = ? S.I = A-P = 73,500 - 60,000 = Rs. 13,500 $T = \frac{S.I \times 100}{P \times R}$ $= \frac{13,500 \times 1,000}{60,000 \times 7.5}$ T = 3 years.

(d) 624.48

- 169. Calculate the present value of ₹ 2,000 to be required after 10 years Compounded annually at 5% per annum given (1.05)¹⁰ = 1.62889 dec 2023

 (a) 1,227.82
 (b) 1,282.48
 (c) 1,328.35
 (d) 1,822.65

 Answer :
 - (a) Amount (A) = Rs. 2,000 Present value (P) = ? T = 10 years R = 5% P.a.c.1 A = P $\left(1 + \frac{R}{100}\right)^{T}$ 2,000 = P $\left(1 + \frac{5}{100}\right)^{10}$ 2,000 = P(1.05)¹⁰ P = $\frac{2,000}{(1.05)^{10}} = \frac{2,000}{1.62889}$ P = Rs. 1,227.82

												-							
1.	b	2.	a	3.	b	4.	a	5.	b	6.	с	7.	с	8.	a	9.	a	10.	b
11.	с	12.	a	13.	b	14.	b	15.	a	16.	a	17.	b	18.	d	19.	b	20.	с
21.	b	22.	с	23.	a	24.	d	25.	a	26.	a	27.	с	28.	с	29.	b	30.	b
31.	c	32.	с	33.	b	34.	b	35.	a	36.	b	37.	a	38.	a	39.	b	40.	b
41.	a	42.	b	43.	с	44.	b	45.	a	46.	a	47.	b	48.	b	49.	с	50.	b
51.	a	52.	с	53.	a	54.	a	55.	a	56.	c	57.	с	58.	с	59.	b	60.	с
61.	a	62.	с	63.	b	64.	d	65.	с	66.	a	67.	b	68.	с	69.	b	70.	a
71.	с	72.	a	73.	a	74.	с	75.	с	76.	с	77.	с	78.	a	79.	a	80.	d
81.	b	82.	b	83.	a	84.	d	85.	a	86.	a	87.	a	88.	с	89.	a	90.	d
91.	b	92.	b	93.	d	94.	d	95.	b	96.	b	97.	с	98.	с	99.	с	100.	a
101.	a	102.	a	103.	a	104.	a	105.	a	106.	b	107.	a	108.	a	109.	с	110.	a
111.	a	112.	с	113.	с	114.	b	115.	a	116.	a	117.	с	118.	a	119.	a	120.	b
121.	d	122.	a	123.	b	124.	b	125.	a	126.	b	127.	b	128.	a	129.	d	130.	b
131.	a	132.	b	133.	c	134.	d	135.	a	136.	d	137.	d	138.	a	139.	a	140.	a
141.	b																		

ANSWER KEY

GBC>> **CHAPTER**

PERMUTATIONS & COMBINATIONS

PAST YEAR QUESTIONS

1.	The number of tr	iangles that can be f	formed by choosing the	e vertices from a se	t of 12 points,
	seven of which lie	on the same straight (1) 175	t line, is:	(1) 105	Nov-2006
	(a) 185	(b) 1/5	(c) 115	(d) 105	
	n = 12	n – '	7		
	11 - 12	$p - \frac{p}{12}$	^{7}C		
	∴ no. of triangl	$es = C_3 - C_3 = C$	$_{3}^{-}$ $C_{3}^{-} = \frac{12 \times 11 \times 10}{2 \times 2 \times 11} - $	$\frac{7\times6\times5}{2\times2\times1} = 220 - 35 =$	185
2.	A code word is to	o consist of two dist	inct English alphabets	followed by two dis	stinct numbers
	between 1 and 9.1	How many such code	e words are there?	5	Nov-2006
	(a) 6,15,800	(b) 46,800	(c) 7,19,500	(d) 4,10,800	
	Solution :				
	Code Num	ber = Two English a	lphabets / Two distinct	number 1 and 9	
	÷ Т	wo English alphabet	$t \rightarrow any 26 \times 25$ Tw	o distinct number –	→ any 9 × 8
	÷ ($Code Words = 26 \times 2$	$5 \times 9 \times 8 = 46800$		
3.	An examination p	aper consists of 12 q	uestions divided into tw	o parts A and B. Pa	rt A contains 7
	questions and pa	rt B contains 5 que	estions. A candidate is	required to attemp	ot 8 questions
	selecting at least	3 from each part. In	how many maximum	ways can the candi	date select the
	questions?	(h) 175	(a) 210	(4) (20	Feb-2007
	(a) 55 Solution •	(0) 175	(c) 210	(u) 420	
	Attempt —	+ 8 question selecting	a at least 3 from each na	rt	
	rttempt	o question selecting	$^{7}C \times ^{5}C = 35$		
	Pos	ssible combinations	$C_3 \times C_5 - 55$		
			$^{7}C_{4} \times ^{5}C_{4} = 175$		
			$^{7}C_{5} \times ^{5}C_{3} = 210$		
			Total $= 420$		
4.	A Supreme Court	Bench consists of 5	judges. In how many w	ays, the bench can g	give a majority
	decision?				Feb-2007
	(a) 10	(b) 5	(c) 15	(d) 16	
	Solution :				
	The bench	can give majority di	vision when 3 judges, 4	judges and 5 judges	8
	Required combination	$tion = 5_{c_3} + 5_{c_4} + 5_{c_4}$	-5_{c_5} 10 + 5 + 1 = 16	5	
5.	Given : $P(7, k) =$	60 P(7, k - 3). Then	:		Feb-2007
	(a) $k = 9$	(b) $k = 8$	(c) $k = 5$	(d) $k = 0$	
	Solution :	7			
	$P_k = 60 \times$	P_{k-3}			
	Or.	$\frac{7!}{6} = 60, \frac{7!}{6}$	Or,	(10 - k)! = 60.(7 - 10)	- k)!
	Or	(7-k)! $(10-k)!(10-k)(9-k)(8-k)$	$(7 \ k)(7 \ k)(-60)(7 \ k)$,
	Or,	(10 - k) (9 - k) (8	$(7 - k) = 5 \times 4 \times 3$		
	01,	$\therefore 10 - k = 5$	9-k=4	8 - k = 3	
		k=5	k = 5	k = 5	
6.	In how many way	s can the letters of th	e word FAILURE be ar	ranged so that the co	onsonants may
	occupy only odd p	ositions?		<u> </u>	May-2007
	(a) 576	(b) 476	(c) 376	(d) 276	
	Solution :				
	'FAILUR	E'			

 $\frac{F}{(1)} - \frac{L}{(2)} - \frac{R}{(3)} - \frac{R}{(4)} - \frac{R}{(5)} - \frac{R}{(6)} - \frac{R}{(5)} - \frac{R}{(6)} - \frac{R}{(5)} - \frac{R}$))))) \therefore There are 3 consonants out of 4 \therefore possible permutation = 4P_3 = 24 ways Remaining place = 4 Total vowels = 4Possible permutation = ${}^{4}P_{4} = 4! = 24$ ways \therefore total permutation = (24 × 24) ways = 576 7. In how many ways can a party of 4 men and 4 women be seated at a circular table, so that no two woman are adjacent? **May-2007** (c) 144 (a) 164 (b) 174 (b) 154 **Solution :** 4 men can be seated in a circular table. So no, of ways = (n - 1)! = 3! = 6 ways \therefore There are 4 places for 4 women \therefore No of ways = 4! = 24 ways The value of $\sum_{r=1}^{5} {}^{5}C_{r}$ is : 8. **May-2007** (a) 29 (b) 31 (c) 35 (d) 26 **Solution :** $\sum_{r=1}^{5} = {}^{5}C_{r} = {}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5} = 2^{5} - 1 = 31$ If ${}^6P_r = 24 {}^6C_r$, then find r : 9. Aug-2007 (b) 6 Solution : ${}^{6}P_{r} = 24 {}^{6}P_{r}$ (a) 4 (c) 2(d) 1 Or, $\frac{6!}{(6-r)!} = 24 \cdot \frac{6!}{r!(6-1)!}$ Or, r! = 24Or, r! = 4!Or, r = 410. How many words can be formed with the letters of the word 'ORIENTAL' so that A and E always occupy odd places: Aug-2007 (a) 540 (b) 8640 (c) 8460 (d) 8450 **Solution :** (1)Possible permutation when A and E always Occupy odd places = ${}^{4}P_{2} = 12$ ways $=^{6} P_{6} = 720$ wave And possible permutation for remaining letters \therefore total permutation = (720 × 12) ways = 8640 ways **11.** If ${}^{1000}C_{98} = {}^{999}C_{97} + {}^{X}C_{901}$, find x : Nov-2007 (a) 999 **Solution :** ${}^{100}C_{98} = {}^{999}C_{97} + {}^{x}C_{901}$ ${}^{100}C_{902} = {}^{999}C_{902} + {}^{x}C_{901}$ (d) 1000 x = 999A building contractor needs three helpers and ten men apply. In how many ways can these 12. selections take place? **Nov-2007** (c) 150 (d) 120 (a) 36 (b) 15 **Solution :** ${}^{10}C_3 = \frac{10!}{7 \times 3!} = 120$ ways There are three blue balls, four red balls and five green balls. In how many ways can they be 13. arranged in a row? Feb-2008 (a)26720 (b) 27720 (c) 27820 (d) 26,620 **Solution :** \therefore Required arrangement = $\frac{12!}{3! \times 4! \times 5!} = 27720$ ways **14.** If C(n, r): C(n, r+1) = 1 : 2 and C(n, r+1): C(n, r+2) = 2:3, determine the value of n and r : Feb-2008 (c) (14, 6) (a)(14, 4)(b)(12,4)(d) None **Solution :**

16.

17.

18.

19.

20.

21.

$$\frac{n_{r_r}}{n_{c_r+1}} = \frac{1}{2}$$
or, $\frac{n_{r_r}}{n_{r_r}} = 2$
or, $n-r = 2r + 2$
or, $n - 3r - 2$
or, $n - r = 2r + 2$
or, $n - 3r - 2$
or, $n - r = 2r + 2$
or, $n - 3r - 2$
or, $n - r = 2r + 2$
or, $n - 3r - 2$
or, $\frac{n_{r_r+1}}{n_{r_r+1}} = \frac{3}{2}$
or, $\frac{n_{r_r+1}}{r_{r+2}} = \frac{3}{2}$
or, $\frac{n_{r_r+1}}{r_{r+2}} = \frac{3}{2}$
or, $\frac{n_{r_r+1}}{r_{r+2}} = \frac{3}{2}$
or, $2n - 2r - 2 - 3r + 6$
or, $2n - 5r = 8$

$$\frac{2n + 5r}{r - r - 4}$$
or, $2n - 2r - 2 - 3r + 6$
or, $2n - 5r = 8$

$$\frac{2n + 5r}{r - r - 4}$$
or, $2n - 20 - 8$
or, $2n -$

GBC>>>

Permutations & Combinations

begin with M arrangements are (6 - 1)! i.e. 5! = 120 ways begin with 'M' and end with 'N' arrangements is (6-2)! = 4! = 24 ways.

 \therefore Required ways are (120 - 24) ways = 96 ways

22. In how many ways can 17 billiard balls be arranged if 7 of them are black, 6 red and 4 white ? June-2009 (d) None of these

(a) 4084080 (c) 8048040 (b) 1 **Solution :** Possible ways $=\frac{17!}{7! \times 6! \times 4!} = 4084080$

23. Out of 4 gents and 6 ladies, a committee is to be formed find the number of ways the committee can be formed such that it comprises of at least 2 gents and at least the number of ladies should **Dec-2009** be double of gents. (b) 132 (c) 136 (d) 104

(a) 94

Solution :				
	4 Gents	6 Ladies		
Select	2	4	in	${}^{4}C_{2} \times {}^{6}C_{4} = 90$
	2	5	in	${}^{4}C_{2} \times {}^{6}C_{5} = 36$
	2	6	in	${}^{4}C_{2} \times {}^{6}C_{6} = 6$
	3	6	in	${}^{4}C_{3} \times {}^{6}C_{6} = 4$
			Total	136

- 24. What is the probability that when the letters of 'REGULATION' be arranged so that the vowels come at odd places? **Dec-2009**
 - (a) 1/252 (d) None of these (b) 1/144 (c) 144/252 Solution : Vowels = 5Consonants = 5Ε U Α Ι 0 (3)(4) (7) (8) (9) (10) (1) (2)(5) (6) 5 vowels in 5 places in ${}^5P_5 = 120$ $^{\circ}P_{5} = 120$ 5 consonants in 5 places Required ways (cases favourable) = 120×120 = 14400 \therefore total cases = 10! Probability = $\frac{14400}{100}$ $=\frac{1}{2}$ 10! 252
- Six points are on a circle. The number of quadrilaterals that can be formed are: **June-2010** 25. (a) 30 (b) 360 (c) 15 (d) None of the above

Solution :
$${}^{n}C_{4} = {}^{6}C_{4} = \frac{6 \times 5}{2} = 15$$

- 26. The number of ways of arranging 6 boys and 4 girls in a row so that all 4 girls are together is : **June-2010**
 - (a) 6!. 4! (b) 2 (7!. 4!) (c) 7!. 4! (d) 2. (6!. 4!) Solution :

Total number of boys and girls = 6 + 4 = 10

 \therefore possible ways when 4 girls are together = 7! [by taking 4 girls as 1]

And in which 4 girls can be arranged in 4! \therefore total possible ways = 7! \times 4!

- How many numbers not exceeding 1000 can be made from the digits 1,2,3,4,5, 6, 7, 8, 9 if 27. repetition is not allowed. **June-2010**
 - (a) 364 (b) 585 (c) 728 (d) 819 **Solution :** $- in {}^{9}P_{1} = 9$ $- - in {}^{9}P_{1} {}^{8}P_{1} = 72$ $--in {}^{9}P_{1}$. ${}^{8}P_{1}$. ${}^{7}P_{1} = 504$ Total = 585
- **28.** A garden having 6 tall trees in a row. In how many ways 5 children stand, one in a gap between the trees in order to pose for a photograph? **Dec-2010**

(a) 24		_	(b)	120		(c)	720			(d) 30	
	Soluti	o n :									
	*	(1)	*	(2)	*	(3)	*	(4)	*	(5)	*

9.4

GBC>>

 \rightarrow Total children = 5 \therefore no of ways in which 5 children can stand one in a gap between trees in order to pose for a photograph 5 places for 5 children = ${}^{5}P_{5} = 120$ ${}^{15}C_3 + {}^{15}C_2$ is equal to; 29. **Dec-2010** (a) ${}^{16}C_2$ (c) ${}^{15}C_{16}$ (d) ${}^{15}C_{15}$ (b) ${}^{3}C_{16}$ **30.** How many ways a team of 11 players can be made out of 15 players if one particular player is not to be selected in the team. **Dec-2010** (a) 364 (b) 728 (c) 1,001 (d) 1,234 Solution : 1 particular Player is not selected Out of Remaining 14 players 11 can be Selected $^{14}C_{11} = 364$ **31.** Find the number of arrangements of 5 things taken out of 12 things, in which one particular thing must always be included. **June-2011** (a) 39,000 (b) 37,600 (c) 39,600 (d) 36,000 **Solution :** 12 things 1 particular Remaining 11 thing Thing must include Can be arranged $5_{p_{1}}$ $11_{p_{A}}$ \therefore no of arrangements = $5_{p_1} \times 11_{p_4}$ $= 5 \times 11 \times 10 \times 9 \times 8$ = 3960032. Exactly 3 girls are to be selected from 5 Girls and 3 Boys. The probability of selecting 3 Girls **June-2010** will be _ (a) 5/28 (b) 1/56 (c) 15/28 (d) None. **Solution :** Total cases = $8_{c_3} = \frac{8!}{3! \times 5!} = \frac{8 \times 7 \times 6 \times 5!}{3 \times 2 \times 5!} = 56$ \therefore favorable cases 3 boys 5 girls $= 10 \times 1 = 10$ 5_{c_3} 3_{c_0} Required probability $=\frac{10}{56}=\frac{5}{28}$ In how many ways 3 prizes out of 5 can be distributed amongst 3 brothers Equally? Dec-2011 33. a) 10 b) 45 c) 60 d) 120 **Solution :** Number of ways in which 3 prizes out of 5 can be distributed amongst 3 brothers equally = $5p_3 = \frac{5!}{2!} = \frac{5 \times 4 \times 3 \times 2!}{2!} = 60$ ways 34. There are 12 questions to be Answered Yes or No. How many ways can these be Answered? **Dec-2011** b) 2048 a) 1024 c) 4096 d) None Solution : 2 ways yes Or no $= 2^{12} = 4096$ 35. A team of 5 is to be selected from 8 boys and three girls. Find the probability that it includes two particulars girls. **Dec-2011** a) 2/30 d) 8/9 b) 1/5 c) 2/11Solution : $=\frac{11\times10\times9\times8\times7\times6!}{}$ Total cases = $11_{c_5} = \frac{11!}{5! \times 6!}$ = 462

ermu	tations & Combinations	9.6			GBC >>>
	Cases favourable = $\frac{2}{462}$ Required Probability = $\frac{84}{462}$	$C_2 \times {}^9C$	$_{B} = \frac{9.8.7}{3.2.1}$		
36.	The letters of the word "VIOLEN The number of permutations is(a) 144 (b) 120 Solution :	NT" are arrange (c) 1	d so that the vov	(d) 72	ven place only. June-2012
	Ι	0	E		
	(1) (2) (3)	(4) (5) (6) (7)		
	There are 3 vowels Remaining 4 conso	and 3 place. So phanes and 4 place	they arranged in e. So they arrang	3! = 6 ways ged in $4! = 24$ v	ways
37	\therefore Total permutation = (6 × 24) wa	ays = 144 ways.			
57.	If " $P_4 = 20("P_2)$ then the value o	f 'n' is	_ <u>.</u>		June-2012
	(a) -2 (b) 7	(c) -	-2 and 7 both	(d) None of	these.
	Solution : $n(n-1)(n-2)(n-3) = 2$	0 n(n = 1)			
	ll(ll - 1)(ll - 2)(ll - 3) = 2 (n - 2)(n - 3) = 20	$0 \ln(n - 1)$ $0 - 5 \times 4$			
	n-2=5	n - 3 = 4			
	n = 7	n =	7		
38.	A man has 3 sons and 6 school	s within his read	ch. In how man	y ways he car	n send them to
	school, if no two of his sons are t	o read in the sam	e schools?		Dec-2012
	(a)° P_2 (b) ° P_3	(c)	53	(d) 3°	
	Solution :	and ac	n in ony of 5 ach		2rd con in only
	of 4 schools	2 80	on in any or 5 set	10018	5 son many
	Required ways = $6 \times 5 \times 4 = {}^{6}P_{3}$				
39.	How many permutations can be	formed form th	e letters of the	word "DRAU	GHT", if both
	vowels may not be separated?				Dec-2012
	(a) 720 (b) 1,440	(c)	140	(d) 1,000	
	Solution :				
	Taking AU together we ha	ive 6 letters (AU)	DRGHT		1n 6! Ways =
	And two vowels can be an (720)	ranged in 2! Way (2) were (-140)	vs = 2 ways		
40	Required permutation = $(720 \times 15^{-13})^{-15}$ then	2) ways $= 1440^{\circ}$	ways		Dec.2012
TU .	(a) 6 (b) 7	, x –(c) ((d) 9	DCC-2012
	Solution :	(-)	-		
	$13_{C_6} + 2.13_{C_5} + 13_{C_4} =$	$= 15_{C_x}$			
	or, $13_{C_6} + 13_{C_5} + 13_{C_5}$	$+ 13_{C_A} = 15_{C_A}$	or, $14_{C_6} + 1$	$4_{C_{5}} = 15_{C_{7}}$	
	or, $15_{C_6} = 15_{C_7}$ $x = 6$	-4 -2	-0	- 5 - 2	
41.	A polygon has 44 diagonals then t	the number of its	sides are :		June-2013
	a) 8 b) 9	c) 1	0	d) 11	
	Solution :				
	No. of diagonals = n_{C_2} – r	$44 = n_0$	$r_2 - n 44 = \frac{n(n)}{2}$	$\frac{n-1}{2} - n$	
	$44 = \frac{n^2 - n - 2n}{2} \qquad \qquad n^2$	n - 3n = 88 n(n	$(-3) = 88 = 11 \times$	8 n = 11	
42.	The number of words that can b	e formed out of	the letters of the	he word "ART	TICLE" so that
	vowels occupy even place is:				June-2013
	a) 36 b) 144	c) 5	74	d) 754	
	Solution :				

Ι E Α

Permutations & Combinations

(1)	(2)	(3)	(4)	(5)	(6)
		3 ח	-		

9.7

(7)

4 consonants in 4 places = ${}^{4}P_{4} = 24$ 3 vowels in 3 places = ${}^{3}P_{3} = 6$ ways ways required permutation = (6×24) ways = 144 ways **43.** Number of ways of shaking hands in a group of 10 persons shaking hands to each other are: **June-2013** a) 45 c) 90 d) 10 b) 54 **Solution :** Number of ways of shaking hands = $n_{c_2} = 10_{c_2} = 45$ 44. If ${}^{15}C_{3r} = {}^{15}C_{r+3}$, then 'r' is equal is. **Dec-2013** (b) 3 (c) 4 (a) 2(d) 5 **Solution :** 3r + r + 3 = 15 Solving r = 345. How many different words can be formed with the letters of the word "LIBERTY" Dec-2013 (a) 4050 (b) 5040 (c) 5400 (d) 4500 **Solution :** 7 letters in ${}^7P_7 = 5040$ ways 46. If ${}^{1000}C_{98} = {}^{999}C_{97} + {}^{x}C_{901}$, then the value of x will be **June-2014** b) 998 a) 999 c) 997 d) None 47. If ${}^{6}P_{r} = 360$, then the value of 'r' is : **Dec-2014** a) 5 b) 3 c) 4 d) None of these Solution : ${}^{6}P_{r} = 360$ Using hit & Trial Taking r = 4 ${}^{6}P_{4} = \frac{6!}{2!} = \frac{6 \times 5 \times 4 \times 3 \times 2}{2!}$ $\therefore r = 4$ (Ans.) = 360 **48.** There are 5 books on English, 4 Books on Tamil & 3 books on Hindi. In how many ways can these books be placed on a shelf if the books on the same subjects are to be together? Dec-2014 b) 1,83,600 c) 1,03,680 d) 1.63.800 a) 1,36,800 **Solution :** Take x Take y Take z , 4 Books Tamil , 3 Books Hindi 5 Books English Books on the same subject are to be together. X, Y, Z 3 things 3 ways to arrange = ${}^{3}P_{3} = 6$ Now. 5 English Books = x 5 ways to arrange = ${}^{5}P_{5} = 120$ Now. 4 ways to arrange = ${}^{4}P_{4} = 24$ 4 Tamil Books = y Now. 3 ways to arrange = ${}^{3}P_{3} = 6$ 3 Hindi Books = z $= 6 \times 120 \times 24 \times 6$ = 1, 03, 680 (Ans.) Required ways 5 Men and 4 Women to sit in a row in such a manner that the woman always occupy the even **49.** places. The number of such arrangement will be : **Dec-2014**

 ${}^{1}P_{1}$

Required ways = $5 \times 4 \times 4 \times 3 \times 3 \times 2 \times 2 \times 1 \times 1 = 2880$ (Ans.) The four digit numbers that can be formed out of the seven digits 1, 2, 3, 5, 7, 8, 9 such that no 50. digit is repeated in any number and are greater than 3000 are **June-2015** a) 120 b) 480 c) 600 d) 840 Solution : 1, 2, 3, 4, 5, 7, 8, 9 Any of the 6 digit = ${}^{6}P_{3}$ 3 ____ 5 Any of the 6 digit = _____ _____ _____ 7 Any of the 6 digit = _____ _____ _____ 8 _____ _____ _____ Any of the 6 digit =9 Any of the 6 digit _____ _____ _____ 6! $\times 5$ $^{6}P_{3} \times 5$ 31 Required ways $= 6 \times 5 \times 4 \times 5 = 600$ (Ans.) 51. A person has 10 friends of whom 6 are relatives. If he invites 5 guests such that three of them are his relatives, then the total number of ways in which he can invite them are: June-2015 a) 30 b) 60 d) 75 c) 120 **Solution :** Total 10 friends **6** Relative Total No. of ways he can invite 5 guest in which 3 are relative = ${}^{6}C_{3} \times {}^{4}C_{2} = \frac{6!}{3! \times 3!} \times \frac{4!}{2! \times 2!} = 120$ (Ans.) 52. A student has three books on computer, three books on Economics and five books on Commerce. If these books are to be arranged subject wise, then these can be placed on a shelf in the number of ways **June-2015** a) 25290 b) 25920 c) 4230 d) 4320 Solution : 3 Books on Economics 5 Books on Commerce 3 Books on Computer $=^{3} P_{3} \times^{3} P_{3} \times^{5} P_{5} = 4320$ Total ways it can be arranged. If subject wise arrangement is to be done, No. of ways *Computer Economics* Commerce Commerce *Economics* Computer *Computer Economics* Commerce \rightarrow Total 6 ways *Economics Computer* Commerce *Economics Computer Commerce* Commerce *Economics Computer* $= 6 \times 4,320 = 25,920$ (Ans.) Required ways 53. An examination paper with 10 questions consists of 6 questions in statistic part. At least one question from each part is to be attempted in how many ways can this be done? **Dec-2015** c) 1005 a) 1024 b) 945 d) 1022 Solution : Out of 6 statistic questions, atleast one is to be done. $=^{6} C_{1} + ^{6} C_{2} + ^{6} C_{3} + ^{6} C_{4} + ^{6} C_{5} + ^{6} C_{6}$ $=2^{6}-1=63$ Out of remaining 4 questions, atleast one is to be done. $=4C_1 + C_2 + C_3 + C_4 = 2^4 - 1 = 15$ \therefore Total questions = $63 \times 15 = 945$

54. If ${}^{n}p_{r} = 720$ and ${}^{n}c_{r} = 120$, then value of 'r' is: a) 4 b) 5 c) 6 d) 3 Solution : ${}^{n}p_{r} = 720$ ${}^{n}c_{r} = 120$ ${}^{n}c_{r} = \frac{{}^{n}p_{r}}{\angle r}$ $\Rightarrow 120\frac{720}{\angle r}$ $\Rightarrow \angle r = 6 \therefore r = 3$

55. There are 6 men and 4 women in a group, then the number of ways in which a committee of 5 persons can be formed of them, if the committee is to include at least 2 women are : Dec-2015 a) 180 b) 186 c) 120 d) 105

56. In how many ways can a selection of 6 out of 4 teachers and 8 students be done so as to include at least two teachers?
June-2016

d) 968

- 57. There are 10 students in a class including 3 girls. The number of ways to arrange them in a row when any two girls out of three never comes together : June-2016

a)
$${}^{8}P_{3} \sqcup 7$$
 b) ${}^{3}P_{3} \sqcup 7$ c) a) ${}^{8}P_{3} \sqcup 10$ d) None of these.
Solution :

No. of arrange to arrange them in a row = ${}^{8}P_{3}$ $\angle 7$ **58.** The maximum number of points of inter section of 10 circles will be **June-2016** a) 2 b) 20 c) 90 d) 180 **Solution :** Points of intersection of 10 circles = =ⁿ $P_2 = {}^{10} P_2 = \frac{\angle 10}{\angle 8} = 10 \times 9 = 90.$ **59.** If $^{n+1}C_{r+1}$: $^{n}C_{r}$: $^{n-1}C_{r-1} = 8:3:1$, then n is equal to Dec -2016 a) 20 b) 16 d) 15 c) 10 60. An examination paper with 10 questions consists of 6 questions in statistic part. At least one question from each part is to be attempted in how many ways can this be done? **Dec -2016** a) 1024 b) 945 c) 1005 d) 1022 Solution : Same as (64). 61. The number of numbers between 1,000 and 10,000, which can be formed by the digits **Dec -2016** 1,2,3,4,5,6 without repetition is (a)720 (c)360 (b)180 (d)540

9.9

Solution : Number of numbers between 1000 and 10000 which can be formed by digits 1, 2, 3, 4, 5, 6 without repetition is ${}^{6}P_{1} \times {}^{5}P_{1} \times {}^{4}P_{1} \times {}^{3}P_{1} = 360$ 62. The number of ways in which 4 persons can occupy 9 vacant seats is: Dec -2016 (a) 6048 (b) 3024 (d) 4536 (c)1512 **Solution :** No. of ways in which 4 persons can occupy 9 vacant places $= {}^{9}P_{1} \times {}^{8}P_{1} \times {}^{7}P_{1} \times {}^{6}P_{1} = 3024$ If ${}^{10}C_3 + 2$. ${}^{10}C_4 + {}^{10}C_5 = {}^{n}C_5$ then value of n is: 63. June-2017 a) 10 b) 11 d) 13 c) 12 **Solution :** ${}^{10}C_3 + {}^{210}C_4 + {}^{10}C_5$ $\Rightarrow^{10} C_3 + {}^{10} C_4 + {}^{10} C_4 + {}^{10} C_5$ $=^{10} C_4 + ^{11} C_5 = ^{12} C_5$ ${}^{12}C_5 = {}^{n}C_5 :: n = 12$ 64. The number of parallelograms, formed from a set of six parallel lines intersecting another set of four parallel lines is: **June-2017** a) 360 b) 90 c) 180 d) 45 **Solution :** No. of parallelograms formed from a set of six parallel lines intersecting another set of four parallel lines ${}^{6}P_{2} \times {}^{4}P_{2} = \frac{{}^{3}6 \times 5}{2 \times 1} \times \frac{{}^{2}4 \times 3}{2 \times 1} = 15 \times 6 = 90.$ 65. The no. of words which can be formed by letters of the word "ALLAHABAD' is: June-2017 a) 7560 b) 3780 c) 30240 d) 15120 **Solution :** The no. of words which can be formed with the letters of "ALLAHABAD" $=\frac{19}{12\times 14}=7560$ 66. If ${}^{n}P_{13}$: ${}^{(n+1)}P_{12} = 3:4$ hen 'n' is _____: **Dec-2017** (c) 18 (a) 13 (b) 15 (d) 31 Answer: **(b)** Given ${}^{n}P_{13} : {}^{n+1}P_{12} = 3:4$ $\frac{n!}{(n-13)!} : \frac{(n+1)!}{(n+1-12)!} = 3:4$ $\frac{n!}{(n-13)!} \times \frac{(n-11)!}{(n+1)!} = 3:4$ $\frac{n!}{(n-13)!} \times \frac{(n-11)(n-12)(n-13)!}{(n+1)n!} = \frac{3}{4}$ $\frac{(n-13)!}{(n+1)(n-12)} = \frac{3}{4}$ $\frac{n^2 - 12n - 11n - 132}{n+1} = \frac{3}{4}$ $4(n^2 - 23n + 132) = 3(n+1)$ $4n^2 - 92n + 528 = 3n + 1$ $4n^2 - 92n - 3n + 528 - 3 = 0$ $4n^2 - 95n + 525 = 0$ $4n^2 - 60n - 35n + 525 = 0$ 4n(n-15) - 35(n-15) = 0(n-15)(4n-35)=0If n - 15 = 0 if 4n - 35 = 0 $n = \frac{35}{4}$ (Impossible) \rightarrow n = 15

The number of triangle that can be formed by choosing the verticals from a set of points, 67. seven of which lie on the same straight line, is: **Mav-2018** (a) 185 (b) 175 (c) 115 (d) 105 Answer (a) Here n = 12, k = 7No. of triangle are formed from 'n' point. In which (k) points are collinear = = ¹²C₃ - ⁷C₃ $=\frac{12\times11\times10}{3\times2\times1}-\frac{7\times6\times5}{3\times2\times1}$ = 220 - 35= 185**68.** If ${}^{100}C_{98} = {}^{999}C_{97} + {}^{x}C_{901}$, find x: **May-2018** (b) 998 (a) 999 (c) 997 (d)1,000 **Answer**: (a) If ${}^{1000}C_{98} = {}^{999}C_{97} + {}^{x}C_{901}$:= ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ Then X = 999 [$^{999}C_{901} = ^{999}C_{98}$] 69. A bag contains 4 red, 3 black and 2 white balls. In how many ways 3 balls can be drawn from this bag so that they include at least one black ball? Nov-2018 (a) 64 (b) 46(c) 85 (d) none of the above **Answer**: (a) No. of Total Balls = 4 Red + 3 Black + 2 White= 9 Balls. If 3 balls are drawn from this bag getting at least one black balls. It may be following cases (a) 1 B & 2 other = ${}^{3}C_{1} \times {}^{6}C_{2} = 3 \times 15 = 45$ (b) 2 B & 1 other = ${}^{3}C_{2} \times {}^{6}C_{1} = 3 \times 6 = 18$ (c) 3 B & 0 other = ${}^{3}C_{3} \times {}^{6}C_{0} = 1 \times 1 = 1$ Total ways =45+18+1= 64 70. The number of words from the letters of the word BHARAT, in which B and H will never together, is Nov-2018 (a) 360 (d) none of the above (b) 240 (c) 120 **Answer:** (**b**) Given Word BHARAT 123456 Total No. of ways arrange the letter of the word = $\frac{61}{21} = \frac{720}{2} = 360$ If letter 'B' and 'H' are always together Then No. of ways = $\frac{51 \times 21}{21} = \frac{120 \times 2}{2} = 60 \times 2 = 120$ Then No. of ways if 'B' and 'H' are neven taken together = 360 - 120= 240 71. If ${}^{n}P_{r} = 720$ and ${}^{n}C_{r} = 120$, then r is Nov-2018 a. 3 b. 4 c. 5 d. 6 **Answer:** (a) Given ${}^{n}Pr = 720$, ${}^{n}Cr = 120$

We know that

 $\frac{n_{C_r}}{m_{C_r}} = \frac{1}{m_{C_r}}$ n_{Pr} = 120 $\lfloor r$ $\overline{720} = \overline{\perp r}$ $\frac{1}{6}$ = ∟r = 6 $= 3 \times 2 \times 1$ Lr ∟r = \[3 72. If these are 40 guests in a party. If each guest takes a shake hand with all the remaining guests. Then the total number of hands shake is **June-2019** (c) 1,560 (d) 1.600 (a) 780 (b) 840 **Answer:** (a) For shaking hands No. of ways =nC2Here, n = 40No. of ways = 40C2 $=\frac{40\times39}{2\times1}$ $=20\times39$ = 780**73.** If $11_{c_x} = 11_{c_{2x-4}}$ and $x \neq 4$ than value of $7_{c_x} = 11_{c_{2x-4}}$ **June-2019** (b) 21 (c) 22(d) 23 (a) 20 **Answer**: (**b**) We know that if ${}^{n}C_{x} = {}^{n}C_{y, \text{ then }} \mathbf{x} + \mathbf{y} = \mathbf{n}$ Therefore, in the case of ${}^{11}C_x = {}^{11}C_{2x-4}$, x + 2x - 4 = 11 \rightarrow 3x - 4 = 11 \rightarrow 3x = 11 + 4 \rightarrow 3x = 15 $\rightarrow x = \frac{15}{3} = 5$

Therefore, ${}^{7}C_{5} = {}^{7}C_{2} = \frac{7 \times 6}{1 \times 2} = 21$

74. In how many ways that the crew of an eight oared be arranged so that if 3 crew can row only on a stoke side and 2 row on the other side is _____. June-2019

(d) 126

(a) 1728 (b) 256 (c) 164
Answer:
(a)
$$(a)$$
 $(b) 256$ (c) 164
 $(c) 164$
 $(c) 164$

Since it is an eight–oared boat, it is safe to assume that there are 8 rowers. First, lets arrange the 2 persons who will row on one side. There are 4 seats, and 2 persons are to be arranged. This can be done in ${}^{4}P_{2}$ ways. Now, lets arrange the 3 rowers for the other side. There are 4 sets and 3 persons are to be arranged. This can be done in ${}^{4}P_{3}$ ways. Now 3 rowers

9.12

and 3 seats remain. These 3 persons can be arranged in there 3 seats in ${}^{3}P_{3}$ ways. Therefore, total no. of ways = $= {}^{4}P_{2 \times} {}^{4}P_{3 \times} {}^{3}P_{3}$ $= 12 \times 24 \times 6$

75. Three girls and five boys are to be seated in a row so that no two girls sit together. Total no. of ways of this arrangement are : Nov-2019

= 1.728

(a) 14,400 (b) 120 (c) ${}^{5}p_{3}$ (d) $3! \times 5!$

Answer:

(a) First, let's arrange the five boys. The boys can be arranged in 5! ways.

_B1_B2_B3_B4_B5

The three girls can be arranged in the empty spaces shown above. There are 6

empty .

spaces and 3 girls. Therefore, 3 spaces are to be selected out of these 6, and

then the three

girls are to be arranged in as many ways as possible. This can be done in

$${}^{6}C_{3} \times 3! = \frac{6 \times 5 \times 4}{1 \times 2 \times 3} \times 3 \times 2 \times 1 = 120$$
 ways.

So, total number of ways= $5! \times 120 = 14,400$

76. How many numbers can be formed with the help of 2, 3, 4, 5, 6, 1 which is not diwisible by 5, given that it is a five digit no. and digits are not repeating? Nov-2019

(a) 600
(b) 400
(c) 1200
(d) 1400

Answer:

(a) The number to be formed is _____

The units place can be filled either with 2, or 3, or 4, or 6, or 1.

Therefore, the unit's place is filled in 5 ways.

Assuming that the unit's place is filled with 1, the ten's place can be filled

either with 2,or

3, or 4, or 5, or 6. Therefore, the ten's place can be filled in 5 ways. Thereafter,

the Hundred's

Place can be filled in 4 ways, the Thousand's place can be filled in 3 ways, and

the Ten

Thousand's place can be filled in 2 ways.

Therefore, total number of ways = $2 \times 3 \times 4 \times 5 \times 5 = 600$

```
77. How many different groups of 3 people can be formed from a group of 5 people? Nov-2019
(a) 5
(b) 6
(c) 10
(d) 9
```

Answer:

(c) We have to select 3 people out of 5 people.

This can be done in ${}^{5}C_{3} = {}^{5}C_{2} = \frac{5 \times 4}{1 \times 2} = 10$ ways

Permutations & Combinations

/8.	In how many way exactly 2 girls?	s can 4 people be	selected at random fi	com 6 boys and 4 g	sirls if there are Nov-2019
	(a) 90	(b) 360	(c) 92	(d) 480	
	Answer:				
	(a) Two girls of	can be selected from	4 girls in ${}^{4}C_{2} = \frac{4 \times 3}{1 \times 2} =$	6 ways	
	Two boys ca	an be selected from 6	boys in ${}^{6}C_{2} = \frac{6 \times 5}{1 \times 2} = 15$	ways	
	Therefore,	total number of way	$s = 6 \times 15 = 90$		
79.	${}^{n}P_{3}:{}^{n}P_{2}=2:1$				Nov-2019
	(a) 4	(b) 7/2	(c) 5	(d) 2/7	
	Answer:				
	(a) Try the opt	ions.			
	Option (a)	$\rightarrow 4$			
	If $n = 4$, LH	$\mathbf{HS} = {}^{\mathbf{n}}\mathbf{P}_3 : {}^{\mathbf{n}}\mathbf{P}_2 = {}^{4}\mathbf{P}_3$	$\frac{4^{4}P_{2}}{4 \times 3} = \frac{4 \times 3 \times 2}{4 \times 3} = 2 = R_{1}$	HS	
	Therefore of	option (a) is the answ	ver.		
0A	A finite hast out	stains 7 annlas 6 has	nonce and I manage	How mony coloctic	ma of 2 forsit con

80. A fruity basket contains 7 apples, 6 bananas, and 4 mangoes. How many selections of 3 fruit can be made so that all 3 are apples? Nov – 2020

(a) 35 ways
(b) 120 ways
(c) 165 ways
(d) 70 ways

Answer:

(a) Since all three have to be apples, we need to select 3 apples from

7 apples.

Therefore, ${}^{7}C_{3} = \frac{7 \times 6 \times 5}{1 \times 2 \times 3} = 35$

81. Out of 7 boys and 4 girls a team of a debate club of 5 is to be chose. The number of teams such that each team includes at least one girls is:
(a) 439
(b) 429
(c) 419
(d) 441

Answer:

(d) No. of teams such that each team includes at least one girl = Total no. of ways –

No. of teams such that each team includes no girl

No. of Boys = 7

No. of girls = 4

Total No. of People = 7 + 4 = 11

Therefore, total number of ways of forming a team

 $={}^{11}C_3 = \frac{11 \times 10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4 \times 5} = 462$

No. of ways such that the team includes no girl at all

$$= {}^{7}C_{5} = {}^{7}C_{7-5} = {}^{7}C_{1} = 21$$

Therefore, no. of ways of selecting a team such that the team

Includes at least one girl = 462 - 21 = 441

82. If $n_{P_4} = 20 n_{P_4}$ where p denotes the number of permutations/n = Nov - 2020 (a) 4 (b) 1 (c) 5 (d) 7 Answer: (d) 7

9.14

(d) Try the options: Options (a) \rightarrow 4 LHS = ${}^{4}P_{4} = 41 = 24$ RHS = 20 × ${}^{4}P_{2} = 20 \times 4 \times 3 = 240$ Since LHS = RHS, option (a) cannot be the answer. Option (b) \rightarrow 2 This cannot be the answer as n always has to be either equal to, or greater than r, In this question, we have r = 4 in the LHS, so n cannot be 2. Option (c) \rightarrow 5 LHS = ${}^{5}P_{4} = 5 \times 4 \times 3 \times 2 = 120$ RHS = 20 × ${}^{5}P_{2} = 20 \times 5 \times 4 = 400$ Since LHS = RHS, option (c) cannot be the answer. Option (d) \rightarrow 7 LHS = ${}^{7}P_{4} = 7 \times 6 \times 5 \times 4 = 840$ RHS = 20 × 7P2 = 20 × 7 × 6 = 840

Since LHS = RHS, therefore, option (d) is the answer.

83. From a group of 8 men and 4 women, 4 persons are to be selected to form a committees so that at least 2 women are there in the committee in how many ways can it be done? Nov – 2020 (a) 168 (b) 201 (c) 202 (d) 220

missing

84. Eight Chairs are numbered from 1 to 8. Two women and three men are to be seated by allowing one Chair for each. First, the women choose the chairs from the chairs numbered 1 to 4 and then men select the chairs from the remaining. Jan - 2021 The number of possible arrangement is

(a) 120 (b) 288 (c) 32 (d) 1440 Answer:

(d) Chair Selection by Women:

2 chairs can be selected from 4 chairs = ${}^{4}C_{2} = \frac{4 \times 3}{1 \times 2} = 6$

After selecting the chairs, we also need to arrange the women.

This can be done in 21 ways.

Therefore, women can be arranged in $6 \times 2! = 12$ ways.

After that, there are 6 chairs left. Three chairs are to be selected, and then the

three men are to be arranged. This can be done in ${}^{6}C_{3} \times 3! = \frac{6 \times 5 \times 4}{1 \times 2 \times 3} \times 3 \times 2 \times 3 \times 2$

1 = 120 ways.

Therefore, total number of ways = $12 \times 120 = 1,440$.

85. 'n' locks and 'n' corresponding keys are available but the actual combination is not known. The maximum number of trials that are needed to assigns the keys to the corresponding locks is Jan - 2021

(a) $(n-1)C_2$ (b) $(n+1)C_2$ (c) $\sum_{k=2}^{n} (k-1)$ (d) $\sum_{k=2}^{n} k$ Answer:

(c) Assume that there are 3 locks and 3 corresponding keys.

The maximum number of trials to assign key to the first lock will be 2. This is because if the first keys are incorrect, then obviously, the third key is the key for the first lock.

Similarly, the number of trials to assign key to the second lock will be 1.

This would automatically assign the third key to the third lock, so the number of trials to assign a key to the third lock will be 0.

Therefore, the maximum number of trials to assign keys to all three locks = 2 + 1

1 = 3

Now, try the options:

Options (a) $\rightarrow (n+1) C_2 = (3-1) C_2 = {}^2C_2 = 1$

Therefore, option (a) cannot be the answer.

Option (b) $\rightarrow {}^{(n+1)}C_2 = {}^{(3-1)}C_2 = {}^4C_2 = \frac{4 \times 3}{1 \times 2} = 6$

Therefore, option (b) cannot be the answer.

Option (c) $\rightarrow \sum_{k=2}^{n} (k-1) = (2-1) + (3-1) = 1 + 2 = 3$

Therefore, option (c) is the answer.

- 86. There are ten flights operating between city A and city B. The number of ways in which a person can travel from city A to city B and return by different flight is (a) 90 (b) 895 (c) 80 (d) 78
- 87. How many odd numbers of four digit can be formed with digit 0,1,2,3,4,7 and 8? Jan 2021 (a) 150 (b) 300 (c) 120 (d) 210 Answer:

(**b**) <u>TH H T U</u>

The unit's place can be filled either with 1, or 3, or 7. Therefore, the unit's place can be filled in 3 ways.

Assuming that the unit's place is filled with the digit 1, the thousand's place can

be filled either 2, or 3, or 4, or 7, or 8.

Therefore, the thousand's place can be filled in 5 ways.

Assuming that the thousand's place is filled with 2, the remaining digits are 0,

3. 4. 7, and 8.

We need to select any two of these 5 digits digits and arrange them in as many

ways as possible. This can be done in ${}^{5}C_{2} \times 2! = \frac{5 \times 4}{1 \times 2} \times 2 \times 1 = 20$ ways.

Therefore, the total number of ways = $5 \times 20 \times 3 = 300$

88. In how many different ways can the letters of the word 'DETAIL' be arranged in such a way that the vowels occupy only the odd numbered positions

(a) 32
(b) 36
(c) 48
(d) 60

Answer:

(b) Vowels – E, A, I

No. of vowels = 3

Consonants – D, T, L No. of consonants = 3There are 6 places to be filled <u>123456</u> There are three odd places -1, 3, 5. Three vowels can be arranged in three odd places in 31 = 6 ways. Three consonants can be arranged in three even places in 31 = 6 ways. Total number of ways = $6 \times 6 = 36$ **89.** $n_{C_p} + 2 n_{C_{p-1}} + n_{C_{p-2}}$? Jan - 2021 (c) $n + 1_{C_{p+1}}$ (b) $n + 2_{C_n}$ (a) $n +_{C_n}$ (d) $n + 2_{C_{n-1}}$ Answer: **(b)** ${}^{n}C_{p} + 2{}^{n}C_{p-1} + {}^{n}C_{p-2}$ $= {}^{n}C_{p} + {}^{n}C_{p-1} + {}^{n}C_{p-1} + {}^{n}C_{p-2}$ $= ({}^{n}C_{p} + {}^{n}C_{p-1}) + ({}^{n}C_{p-1} + {}^{n}C_{p-2})$ $= (^{n+1}C_{p}) + (^{n+1}C_{p-1}) \dots [Since (^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1})]$ $=^{n+1}C_{p} + {}^{n+1}C_{p-1}$ = ⁿ⁺¹⁺¹C_p [Since (ⁿ⁺¹C_r = ⁿC_r + ⁿC_{r-1})] = ⁿ⁺²C_P 90. A business houses wishes to simultaneously elevate two of its six branch heads. In how man ways these elevation can take place? Jan - 2021 (a) 12 (b) 3 (c) 6(d) 15 **Answer:** (d) We have to select two branch heads out of six branch heads.

This can be done in ${}^{6}C_{2} = \frac{6 \times 5}{1 \times 2} = 15$ ways. 91. If ${}^{n}p_{6} = 20{}^{n}p_{4}$ then the value of n is given by: (a) n = 5 (b) n = 3 (c) n = 9 (d) n = 8 Answer:

(c) Try the options,

Option (c) \rightarrow n = 9

 $LHS = {}^9P_6 = 9 \times 8 \times 7 \times 6 \times 5 \times 4 = 60,480$

RHS =
$$20 \times {}^{9}P_{4} = 20 \times 9 \times 8 \times 7 \times 6 = 60,480$$

- 92. How many numbers of seven digit numbers which can be formed from the digits 3, 4, 5, 6, 7, 8, 9 no digits being repeated are not divisible by 5?
 (a) 4320
 (b) 4690
 (c) 3900
 (d) 3890
 Answer:
 - (a) We have seven spaces to fill.

Since the number should not be divisible by 5, the seventh place cannot be filled with 5.

Therefore, the seventh place can be filled in 6 ways.

The sixth place can be filled in 6 ways. The fifth place can be filled in 5 ways. The fourth place can be filled in 4 ways. The third place can be filled in 3 ways. The second place can be filled in 2 ways. The first place can be filled in 1 way. Therefore, total number of ways = $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 6$ =4.32093. A person can go from place 'A' to 'B' by 11 different modes of transport but is allowed to return back to "A" by any mode other than the one earlier. The number of different ways, the entire journey can be complete is: July - 2021 (c) 9^5 (d) 10^9 (b) 10^{10} 110 **Answer:** (a) Number of ways he can go from A to B = 11Number of ways he can return to A = 10Total number of ways = $11 \times 10 = 110$ 94. The number of ways 5 boys and 5 girls can be seated at a round table, so no two boys are adjacent is_ **July – 2021** (a) 2,550 (b) 2.880 (c) 625 (d) 2.476 95. The number of 4 letter words can be formed using letters of word DECTIONARY Dec-2021 (a) 5040 (b) 720 (c) 90(d) 30240 Answer: (a) There are 10 letters in the word DECTIONARY, 4 letters can be selected and

arranged out of these 10 letters in ${}^{10}C_4 \times 41$ ways.

Therefore,

 ${}^{10}C_4 \times 41 = \frac{10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4} \times 41 = 5,040$

96. The number of words that can be formed using the letters of the "PETROL" such that the words do not have "P" in the first position, is Dec-2021

(a) 720
(b) 120
(c) 600
(d) 540

Answer:

(c) We have 6 places to fill:

The first place can be filled either with E, T, R, O, or L, i,e., in 5 ways.

Suppose you fill the first plsce with T. Now, the second place can be filled either with P, E, R. O, or L, i,e., in 5 ways.

Suppose you fill the second place with P. Now, the third place can be filled either with E,R,O, or L, i.e., in 4 ways.

Suppose you fill the third place with E. Now, the fourth place can be filled either with R,O, or L,i.e., in 3 ways.

Suppose you fill the fourth place with R. Now, the fifth place can be filled either with O, or L, i.e., in 2 ways.

Suppose you fill the fifth place with O. Now, the sixth place can be filled either with L, i.e., in 1 way. Therefore, the number of words that can be formed = $5 \times 5 \times 4 \times 3 \times 2 \times 1 = 600$. 97. If ${}^{n}p_{2} = 12$, then the value of n is **Dec-2021** (b) 3 (c) 4 (a) 2(d) 6 **Answer**: (c) Try the options. Option (a) $\rightarrow 2$ $^{2}P_{2} = 2$ Option (b) \rightarrow 3 ${}^{3}P_{2} = 3 \times 2 = 6$ Option (c) $\rightarrow 4$ $4P2 = 4 \times 3 = 12$. The number of different ways the letters of the word "DETAIL" can be arranged in such a way 98. **Dec-2021** that the vowels can occupy only the odd position is (a) 32 (b) 36 (c) 48 (d) 60 **Answer:** (b) Vowels: E, A, I Consonants: D, T, L There are six places to be filled: <u>1 2 3 4 5 6</u> There are three odd positions, i.e., 1, 3, and 5. Also, there are three vowels. Therefore, three vowels can be arranged in 3 places in 3! ways. Similarly, the 3 consonants can be arranged in the positions 2, 4, and 6 in 3! ways. Therefore, total number of ways = $3! \times 3! = 6 \times 6 = 36$ 99. Six boys and five girls are to be seated for a photograph in a row such that no two girls sit together and no two boys sit together. Find the number of ways Dec-2021 (b) 96,900 (a) 74,200 (c) 45,990 (d) 86,400 **Answer**: (d) No. of Boys = 6No. of Girls = 5 $B_1 \times B_2 \times B_3 \times B_4 \times B_5 \times B_6$ No. of ways = ${}^{5}P_{5} \times 6!$ $= 5! \times 6!$ $= 120 \times 720$ = 86,400**100.** If a man travels from place A to B in 10 ways then by how many ways can he come back by

another train? June 2022

(a) 94	(b) 110	(c) 90	(d) 99
(•••) > •	(0) = = 0		()

GBC>>>

(d) 40320

Answer:

(c) No. of ways = 10×9

= 90

101. If four words are taken with or without meaning from the word 'Logaritham' without repetition. How many words will be formed? June 2022

(a) 5040 (b) 2520 (c) 120

Answer:

(c) Here, n = 9; r = 4

4 letters are to be selected from 9 letters. This can be done in ${}^{9}C_{4}$ ways.

Since arrangement is also required, this will be multiplied with 4!

Therefore,
$${}^{9}C_{4} \times 4! = {}^{9}P_{4} = 9 \times 8 \times 7 \times 6 = 3024$$

102. If $\frac{n!}{10} = \frac{(n-1)!}{(n-1-n+3)!}$, find 'n' **June 2022**
(a) 4 (b) 5 (c) 6 (d) 7
Answer:
(b) If $\frac{n!}{10} = \frac{(n-1)!}{(n-1-n+3)!}$
 $\frac{n(n-1)!}{10} = \frac{(n-1)!}{2!}$
 $\frac{n}{10} = \frac{1}{2} \rightarrow 2n = 10$
 $n = 5$
103. 7 boys and 4 girls from which a team of 5 is to be selected, each team sh

103. 7 boys and 4 girls from which a team of 5 is to be selected, each team should have atleast one girl is: June 2022
(1) 420

(a) 429 (b) 439 (c) 419 (d) 441 **Answer:**

(d) Boys Girls

7

5

If at least one girl is selected then it may be following cases.

(a) 1 Girl and 4 Boys $= {}^{4}C_{1} \times {}^{7}C_{4} = 4 \times 35 = 140$

4

- (b) 2 Girls and 3 Boys = ${}^{4}C_{2} \times {}^{7}C_{3} = 6 \times 35 = 210$
- (c) 3 Girls and 2 Boys = ${}^{4}C_{3} \times {}^{7}C_{2} = 4 \times 21 = 84$
- (d) 4 Girls and 1 Boy $= {}^{4}C_{4} \times {}^{7}C_{1} = 1 \times 7 = 7$

Total No of ways = 140 + 210 + 84 + 7

= 441

- 104. 8 People are seated in a row in a meeting among them the president and vice president are to be seated always in the center. What is the arrangement? June 2022
 - (a) 7!2! (b) 6!2! (c) 6! (d) 1! Answer:
 - (a) The correct answer is (a) $\rightarrow 7!2!$

Vice Presented Presented No. of ways = 7!2!**105.** There are 5 questions each have four options. Then in how many different ways can we answer the questions? **June 2022** (a) 20 (b) 120 (c) 1024 (d) 60 **106.** If there are 6 points in a line and 4 points in another line. Find the number of parallelogram formed? **June 2022** (a) 80(b) 90 (c) 90 (d) 100 **Answer:** (c) No. of Parallelogram = ${}^{m}C_{2} \times {}^{n}C_{2}$ Here, m = 6, n = 4 $= {}^{6}C_{2} \times {}^{4}C_{2}$ $= 15 \times 6$ = 90**107.** If ${}^{11}C_x = {}^{11}C_{2x-4}$ and $x \neq 4$, then value of ${}^{7}C_x$ **June 2022** (a) 20 (b) 21 (c) 22 (d) 23 Answer: **(b)** If ${}^{11}C_x = 11C_{2x-4}$ [: *if* $n_{C_x} = n_{C_y}$, *then* n = n + y]

Then,
$$X + 2n - 4 = 11$$

 $3n = 11 + 4$
 $3n = 15$
 $n = \frac{15}{3} = 5$
 ${}^{7}C_{n} = {}^{7}C_{5} = {}^{7}C_{2} = \frac{7 \times 6^{3}}{2 \times 1} = 21$

108. There are 20 points in a plane area. How many triangles can be formed by these points if points are collinear? Dec 2022

(a) 550 (b) 560 (c) 1130 (d) 1140 **Answer:**

(c) Here, Total No. of points in a plane (n) = 20

No. of collinear points (k) = 5

No. of triangle are formed from 'n' points.

In which 'k' points are collinear = ${}^{n}c_{3} - {}^{k}c_{3}$

$$=$$
 ²⁰c₃ $-$ ⁵c₃

$$= 1140 - 10$$

109. The number of ways 4 boys 3 girls can be seated in a row so that they are alternate Dec 2022
(a) 12
(b) 288
(c) 144
(d) 256
Answer:

(c) Total Boys = 4, Total girls = 3

 $B / \underline{G} B \underline{G} B \underline{G} B$ No. of ways = $4! \times 3!$ $= 24 \times 6$ = 144**110.** If ${}^{n}P_{r} = 3024$ and ${}^{n}C_{r} = 126$, then find n and r? **Dec 2022** (c) 12, 4 (a) 9, 4 (b) 10, 3 (d) 11, 4 Answer: (a) If ${}^{n}P_{r} = 3,024$ and ${}^{n}C_{r} = 126$ We know that $\frac{n_{C_r}}{n_{P_r}} = \frac{1}{\Box r}$ $\frac{126}{3.024} = \frac{1}{\lfloor r}$ $Lr = \frac{3,024}{126}$ $\lfloor r = 24$ $\lfloor r = \lfloor 4 \Rightarrow r = 4$ Here ${}^{n}P_{r} = 3.024$ $\frac{n!}{(n-r)} = 3,024$ hits and trails = n = 9 and r = 4 $\frac{19}{1(9-4)} = \frac{19}{15} = \frac{9 \times 8 \times 7 \times 615}{15} = 3,024$ It is satisfied so n = 9, r = 4**111.** How many 3 digit odd numbers can be formed using the digits 5,6,7,8,9, if the digits can be repeated? **Dec 2022 Ans: (b)** (a) 55 (b) 75 (c) 65 (d) 85 **Answer**: (b) H T U $5 \ 5 \times 5 \times 1 \ 5 = 25$ $6 \ 5 \times 5 \times 1 \ 7 = 25$ 7 8 $9 5 \times 5 \times 1 9 = 25$

Total ways = 75

112. In the next world cup these will be 12 teams, divided equally into two equal groups. Team of each group will play a match against other From each group 3 top teams will quality for next round. In this round each team will play against each other. Four top teams of his round will qualify for the semi-final round, when each team will play against the others once. Two top teams of this round will go to final round where they will paly the best of three matches. The minimum number of matches in the next world cup will be: Ans: (b) June 2023

a) 56
b) 53
c) 37
d) 43

(b) SoI: - Matches in First Round = ${}^{6}C_{2} + {}^{6}C_{2}$

$$= 15 \times 15$$

= 30

Matches in 2^{nd} Round = ${}^{6}C_{2} = 15$

Matches in semi finals = ${}^{4}C_{2} = 6$

Final is best of three so if one team win First match and second match then

there

will not be third match.

The total minimum matches = 30 + 15 + 6 + 2

= 53

113. A committee of 3 women and 4 men is to be formed out of 8 women and 7 men. Mrs. Kajal refuses to serve in a committee in which Mr. Yash is a member. The number of such committee can be. Ans: d) June 2023

(a) 1530 (b) 1500 (c) 1520 (d) 1540 Answer:

(d)

Women Men 8 7 3 4 No. of ways = ${}^{8}C_{3} \times {}^{7}C_{4} - {}^{7}C_{2} \times {}^{6}C_{3}$ $= 56 \times 35 - 21 \times 20$ = 1960 - 420= 1540**114.** Of ${}^{6}P_{2r} = 12 \ x {}^{6}_{Pr}$, then r is equal to: **Ans: b) June 2023** (a) 1 (b) 2(c) 3(d) 4 **Answer: (b)** Given ${}^{6}P_{2r} = 12$. ${}^{6}P_{r}$ ------ (1) By Hits and Trials r = 2 Satisfied equation (1) L.H.S = ${}^{6}P_{2r}$ $= {}^{6} P_{2} \times 2 = {}^{6}P_{4} = \frac{6!}{(6-4)!} = \frac{6!}{2!} = \frac{6 \times 5 \times 4 \times 3 \times 2!}{2!} = 360$ $R.H.S = 12 \cdot {}^{6}P_{r}$ $= 12 \cdot {}^{6}P_{2}$ $= 12 \times \frac{6!}{(6-2)!}$ $= 12 \times \frac{6!}{4!} = 12 \times \frac{6 \times 5 \times 4!}{4!} = 360$ L.H.S = R.H.S

115. Find the number of ways in which the letters of the word SOFTWARE be arranged such that all the vowels are always together? Ans: d June 2023

Pern	nuta	tions	& Co	mbin	ation	s 9.24								GBC>>>						
		(a) 720)			(b)	1,440			(0	c) 2,88	30			(d) 4	,320				
	1	Answe	er:																	
		(0	I)																	
	[E			S]	F		Т			W			R		7	
		1	l			2			3		4			5			6			
]	No. of	ways	if all	vowe	ls are	alway	ys tog	ether											
		= 6!	×3!																	
		= 72	20×6																	
		= 4,3	320																	
11	. 6.]	In how the vov	/ man wels a	y diff Iways	erent com	ways e toge	can t ther ?	the le Dec	tters of 2023	of the	word	'CO	RPOI	RATI	ON' b	e arra	ange s	so tha	.t	
	((a) 810)			(b)) 144()		(c) 252	200			(d)50	400				
	1	Answe	er: d) O(DAIO		C		IN												
			()	1			23456	57												
			No	of wa	ays =	$\frac{7!}{2!} \times \frac{5}{3}$! '													
					=	5,040	$\times \frac{120}{5}$													
					=	² 5040	0 6													
11	7.]	If ${}^{15}c_{3r}$	= 15c	r+3 the	n r is	s equal to : Dec 2023														
	(a) 5) 4			(c) 3				(d) 2					
	1	Answe	er:) If ¹⁵	$C_{2n} =$	¹⁵ C - 2															
		(C)	, n 3r +	-r + 3	$c_{r-3} = 15$			[ïIf ^r	$c_{x} = n$	$c_{\rm v}$ the	n n =	$\mathbf{x} + \mathbf{y}$	1							
			4r :	= 15 -	- 3			-		5		2	-							
			4r :	= 12																
11	8 1	Find 'r	r= fnu	= 3 Do -70		2023														
11	118. Find 'n' if ⁿ P ₂ =72 Dec 2 (a) 12) 36			(c) 24				(d) 9					
	(a) 12 Answer :									Ì										
		(d) If nH	$P_2 = 72$	2															
			$\frac{n!}{(n-2)}$	$\frac{1}{1} = 72$	2															
	$\frac{n(n-1)(n-2)!}{(n-2)!} = 72$																			
			(n n n -	2)! - 1)=	9×8															
$n(n-1)=9\times(9-1)$																				
			on co	ompar	ing n	= 9														
								A	Answe	er Ke	y									
1.	a	2.	b	3.	d 1	4.	d	5.	C L	6.	a	7.	c	8.	b	9.	a	10.	b	

1.	a	2.	b	3.	d	4.	d	5.	С	6.	a	7.	С	8.	b	9.	a	10.	b
11.	a	12.	d	13.	b	14.	a	15.	b	16.	d	17.	с	18.	а	19.	С	20.	с
21.	с	22.	а	23.	с	24.	a	25.	С	26.	с	27.	b	28.	b	29.	а	30.	a
31.	с	32.	а	33.	с	34.	с	35.	С	36.	а	37.	b	38.	b	39.	b	40.	a
41.	d	42.	b	43.	a	44.	b	45.	b	46.	а	47.	с	48.	С	49.	d	50.	с
51.	с	52.	b	53.	b	54.	d	55.	b	56.	b	57.	a	58.	С	59.	d	60.	b
61.	с	62.	b	63.	с	64.	b	65.	а	66.	b	67.	a	68.	a	69.	а	70.	b
71.	a	72.	a	73.	b	74.	a	75.	a	76.	a	77.	с	78.	a	79.	a	80.	a

Permutations & Combinations

		GBO	
-			

81.	d	82.	d	83.	b	84.	d	85.	d	86.	a	87.	b	88.	b	89.	b	90.	d
91.	с	92.	a	93.	a	94.	b	95.	a	96.	с	97.	с	98.	b	99.	d	100.	с
101.	а	102.	b	103.	d	104.	b	105.	с	106.	С	107.	b	108.	с	109.	с	110.	А
111.	b	112.	b	113.	d	114.	b	115.	d										

CQCHAPTER A.P. AND G.P.

PAST YEAR QUESTIONS

BASIC

1.	The sum of square of first n natural numbers is :			Feb-2007	
	(a) $\frac{n(n+1)}{n}$	(b) $\frac{n(n+1)(2n+1)}{n(n+1)(2n+1)}$	(c) $\frac{n(n-1)(n-2)}{n(n-1)(n-2)}$	(d) $\frac{n(n+1)(n+2)}{n}$	
2.	Σn^2 defines:	6	6	⁶ June-2009	
	(a) $\frac{n(n+1)(2n+1)}{2n+1}$	(b) $\frac{n(n+1)}{n(n+1)}$	(c) $\left[\frac{n(n+1)}{2}\right]^2$	(d) None of these	
2	(a) $\frac{6}{6}$	$(0) \frac{2}{2}$	$(0) \begin{bmatrix} -2 \end{bmatrix}$	(u) None of these	
з.	The value of $1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + m^{2}$ is equal to : $[m(m+1)]^{3} = [m(m+1)(2m+1)] = [m(m+1)]^{2}$			June-2014	
	(a) $\left[\frac{m(m+1)}{2}\right]$	(b) $\frac{m(n+1)(2m+1)}{6}$	(c) $\left[\frac{m(m+1)}{2}\right]$	(d) None of these	
	• Answer: (c) $1^3 + 2^3 + 3^3 + 2^3 = \sum m^3 m^3 = \left[\frac{m(m+1)}{2}\right]^2$		$\dots + m^3$		
	AP BASIC				
4.	Find the sum of the serie	s: 2 + 7+ 12+	297Aug-2007		
	(a) 8970	(b) 8870	(c) 7630	(d) 9875	
	Solution :				
	a = 2	d = 5	$t_n = 297$		
	\Rightarrow a + (n - 1)	d = 297			
	$\Rightarrow 2 + (n - 1)$ $\Rightarrow (n - 1)5 = -$	5 = 297	$\ell = 1_{\text{out town}} = 207$		
	$\Rightarrow (II - 1)S =$ $\Rightarrow (n - 1) = 5$	293 Q	t = last term = 297		
	$\Rightarrow (n-1) = 3$ $\Rightarrow n = 60$				
	$\therefore \operatorname{Sum} = \frac{n}{2} (a + \ell)$				
	$\frac{2}{60}$ (2)	207)			
	$=\frac{1}{2}(2 + 1)$	297)			
5	= 89/0 (y + 1) 2y (4y + 2) are in AB Find the value of y Dec 2008				
э.	(x + 1), 5x, $(4x + 2)$ are if	(b) 3	(c) 4	(d) 5	
	Solution :	(0) 5	(0) T	(u) 5	
	In A. P. 2b	= a + c			
	2 >	$\times 3x = 4x + 2x + 1$			
	\Rightarrow	6x = 5x + 3			
		$\Rightarrow x = 3$			
6.	If each month \gtrless 100 increases in any sum then find out the total sum after 10 months, if				
	sum of first month is \vec{z} 2,	,000	a) ₹ 50,000	Dec-2011	
	a) $< 24,500$	D) X 24,000	c) < 50,000	a) < 60,000	
	a = 2000 d = 100				
	n = 10				
	$S = \frac{n}{2} [2a + (n-1)d]$				
	$S = \frac{1}{2} [4000 + 900]$				

A.P. & G.P.

S = 24500

- 7. A person pays ₹ 975 in monthly instalments, each instalment is less than former by ₹ 5 The amount of first instalment is ₹100. In what time will the entire amount be paid? Feb-2007 (a) 26 months (b) 15 months (d) 18 months (c) Both (a) & (b) Solution : Let the entire amount be paid in n months First installment (a) = 100d = -5 $\therefore t_2 = a + d = 100 - 5 = 95$ Similarly, The series is 100, 95, 90, 80, upto n months Sum = $\frac{n}{2}[2a + (n-1)d]$ 975 = $\frac{n}{2}[2 \times 100 + (n-1)(-5)]$ ⇒ $975 = \frac{2}{100n} - \frac{n}{2} \cdot 5(n-1)$ $975 = \frac{200n - 5n^2 + 5n}{2}$ ⇒ ⇒ $1950 = 200n - 5n^2 + 5n$ ⇒ $5n^2 - 205n + 1950 = 0$ ⇒ $n^2 - 41n + 390 = 0$ ⇒ $n^2 - 15n - 26n + 390 = 0$ ⇒ n(n - 15) - 26(n - 15) = 0⇒ :: n = 15, 26But we take n = 15 months because after twenty one installments, the installments become negative. So ignored n = 26. The sum of all two Digit odd numbers is **Dec-2011** 8. a) 2475 b) 2575 c) 4950 d) 5049 **Solution :** a = 11 $S = \frac{45}{2}[a + \ell]$ $S = \frac{45}{2}[11 + 99]$ d = 2 $t_n = a + (n-1)d$ $\Rightarrow 99 + 11 + (n-1)2$ $\Rightarrow \frac{88}{2} = (n-1) \qquad \Rightarrow n = 45$ = 24759. If 8th term of an AP is 15, then sum of its 15 terms is **June-2012** (a) 15 (b) 0(c) 225 (d) 225/2**Solution :** $t_8 = a + 7d$ $t_{15} = a + 14d$ 15 = a + 7d $S_n = \frac{n}{2}(a + \ell)$ $S_{15} = \frac{\frac{15}{2}}{(a + a + 14d)}$ $= \frac{\frac{15}{2}}{(2a + 14d)}$ = 15(a + 7d)= 15(15) = 22510. If third term and seventh term of an A.P are eighteen and thirty respectively, then sum of first **June-2015** twenty terms will be: a) 540 b) 610 c) 740 d) 810 **Answer:**
 - (d) Let 1st term of A.P. is a and common difference is d.

Given: $T_3 = 18$ and $T_7 = 30$ a + 2d = 18(1) a + 6d = 30(2)

eq(2) = eq(1) $\mathbf{a} + 6\mathbf{d} = 30$ a + 2d = 18_-_ 4d = 12d = 3 in equation (1) $a + \overline{6 \times 3} = 30$ a + 18 = 30a = 30 - 18 = 12 $S_n = \frac{n}{2}[2a + (n-1)d]$ $S_{20} = \frac{\overline{20}}{2} [2 \times 12 + (20 - 1)3]$ $= 10[24 + 19 \times 3]$ = 10[24 + 57] $= 10 \times 81 = 810$ 11. If the sum 50 + 45 + 40 + 35 +_____ is zero, then the number of terms is : **Dec-2016** (a) 22 (b) 20 (c) 21 (d) 25 Solution : $= 0 \frac{n}{2} [50 \times 2 + (n-1) \times -5]$ $\Rightarrow 0 [100 - 5n + 5]$ $\Rightarrow 0 = 105 - 5n$ $\therefore n = 21.$ **June-2017 12.** The value c such that a, -3, b, 5, c are in A.P. is: a) -7 b) 1 c) 13 d) 9 **Solution :** a, -3, b, 5, c d = - - 3 - a-3 - a = +3or d = b + 3 \Rightarrow -3-=a+b or d = c - 5 $\therefore a + b = -6$ ---- (1) b + 3 = c - 5 $\Rightarrow b - c = -5 - 3$ d = 5 - b $\Rightarrow c - b = 8$ ---- (2) a + b = -6c - b = 8a + c = 2----- (3) \Rightarrow a = 2 - c are know c = a + (5 - 1)cc = a + 4 (c - 5) \Rightarrow c = 2 - c + 4c - 20 \Rightarrow c = 2 + 3c - 20⇒ \Rightarrow - 2c = - 18 \therefore c = 9. 13. The sum of the series - 8, - 6, - 4, n terms is 52. The number of terms n is Nov-2018 a) 11 c) 13 b) 12 d) 10 **Answer:** (c) Given series -8, -6, -4,n term Let term (a) = -8Common difference (d) = (-6) - (-8)= -6+8 = 2 Sum of 'n' term $(S_n) = 52$, n=?

We know that $S_n = \frac{n}{2} [2a + (n-1)d]$ $52 = \frac{\bar{n}}{2} [2 \times (-8) + (n-1)(2)]$ $52 \times 2 = n(-16 + 2n - 2)$ 104 = n(2n-18) $104 = 2n^2 - 18n$ $2n^2 - 18n - 104 = 0$ $n^2 - 9n - 52 = 0$ (n-13)(n+4) = 0If $n - 13 = 0 \implies n = 13$ and $n + 4 = 0 \implies n = -4$ 14. The value of K, for which the terms 7K + 3, 4K - 5, 2K + 10 are in A.P., is Nov-2018 a) 13 b) - 13 c) 23 d) - 23. **Answer**: (d) If 7K + 3, 4K - 5.2K + 10 are in A.P. Then. (4K-5) - (7K+3) = (2K+10) - (4K-5)4K - 5 - 7K - 3 = 2K + 10 - 4K + 5-3K - 8 = -2K + 15-8 - 15 = -2K + 3K-23 = K**15.** If $2 + 6 + 10 + 14 + 18 + \dots + x = 882$ then the value of x **June-2019** a) 78 d) 86 b) 80 c) 82 Answer: (c) If $2 + 6 + 10 + 14 + 18 + \dots + x = 882$ a = 2, d = 6 - 2 = 4, n = n $s_n = 882, I = x$ $\operatorname{Sn} = \frac{n}{2} \left[2a + (n-1)d \right]$ $882 = \frac{n}{2} [2 \times 2 + (n-1)4]$ $882 \times 2 = n (4 + 4n - 4)$ $882 \times 2 = 4n^2$ $n^2 = \frac{882 \times 2}{24}$ $n^2 = 441 = n = 21$ Now, I = a + (n-1) d $x = 2 + (21 - 1) \times 4$ x = 2 + 80x= 82 16. If the sum of five terms of AP is 75. Find the third term of the series Nov-2019 (d) 20 (a) 35 (b) 30 (c) 15 **Answer:** (c) $S_n = \frac{n}{2} [2a + (n-1)d]$ n=5 $S_5 = 75$ $S_5 = \frac{5}{2} [2a + (5-1)d]$ $75 = \frac{5}{2}[2a + 4d]$ $75 = \frac{5 \times 2}{2} [a + 2d]$ 15 = a + 2d-Eq(1) $T_3 = a + (3-1)d$ $T_3 = a + 2d$ ---- From Eq(1) $T_3 = 15$

17. The 20th term of arithmetic progression whose 6th term is 38 and 10th term is 66 is:Nov -2020 (a) 118 (b) 136 (c) 178 (d) 210

Answer: (**b**) Let first term of A.P = aCommon difference = dand $T_{10} = 66$ Given $T_6 = 38$ $a + 5d = 38 \dots(i)$ $a + 9d = 66 \dots$ (ii) Eg. (ii) – (i) -a + 9d = 66a + 5d = 384d = 28d = 7d = 7 in eg.(i) $a + 5 \times 7 = 38$ a + 35 = 38a = 3 = a + 19d T_{20} $= 3 + 19 \times 7$ = 3 + 133= 136**18.** The nth terms of the series $3 + 7 + 13 + 21 + 31 + \dots$ is Jan - 2021 (d) $n^3 + 2$ (b) $n^2 + 2n$ (c) $n^2 + n + 1$ (a) 4n - 1**Answer:** (c) Given Series 3+7+13+21+31+ ----- n terms Shortcut by Hits / Trial Method $(a) T_n = 4n - 1$ $n = 1, T_1 = 4 \times 1 - 1 = 3$ $n = 2, T_2 = 4 \times 2 - 1 = 7$ n = 3, $T_3 = 4 \times 3 - 1 = 11$ Series is 3,7,11 ----- which is not correct. $(c) Tn = n^2 + n + 1$ $n = 1, T_1 = 1^2 + 1 + 1 = 3$ n = 2, $T_2 = 2^2 + 2 + 1 = 4 + 3 = 7$ n = 3, $T_3 = 3^2 + 3 + 1 = 9 + 4 = 13$ Series is 3,7,13, ----- which is correct. **19.** The number of terms of the series: $5+7+9+\ldots$ must be taken so that the sum may be 480. July - 2021 (a) 20 (c) 15 (d) 25 (b)10 Answer: (a) Clearly, the given series is AP. We have a = 5; d = 2; $S_n = 480$; n = ? $S_n = \frac{n}{2} \times (2a + (n-1)d)$ $\Rightarrow 480 = \frac{n}{2} \times [(2 \times 5) + (n-1)2]$ $\Rightarrow 480 = \frac{n}{2} \times [10 + (n-1)2]$ Now, try the options Option (a) $\rightarrow 20$ RHS = $\frac{20}{2} \times [10 + (20 - 1)2] = 480 = LHS$ **20.** The sum of series $7 + 14 + 21 + \dots$ To 17^{th} term is: **Dec-2021** (b) 971 (a) 1071 (c) 1171 (d) 1271 **Answer:** (a) Clearly, this is an AP with a = 7; d = 14 - 7 = 7; n = 17
$S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{17} = \frac{17}{2} [(2 \times 7) + (17 - 1)7] = 1,071$ **21.** The nth term of the series 9, 7, 5, and 15, 12, 9, Are same. Find the nth term? **June 2022** (b) 8 (c) 9(d) 10 (a) 7 **Answer**: (a) Given Series 9,7,5, n term a = 9, d = 7 - 9 = -2, n = n $T_n = a + (n-1)d$ $T_n = 9 + (n-1)(-2)$ =9-2n+2= 11 - 2nAnd other series $= 15, 12, 9, \dots, n$ term a = 15, d = 12 - 15 = -3, n = n $T_n = a + (n-1)d$ = 15 + (n-1)(-3)= 15 - 3n + 3 = 18 - 3nGiven nth term of both series are equal then 11 - 2n = 18 - 3n3n - 2n = 18 - 11n= 7

AP MEDIUM

22. The sum of the third and ninth term of an AP is 8. Find the sum of the first 11 terms of the progression **Dec-2011** a) 44 b) 22 c) 19 d) 11 **Solution :** $t_3 + t_9 = 8$ \Rightarrow a + 2d + a + 8d + 8 \Rightarrow 2a + 10d = 8 $t_{11} = a + 10d$ \Rightarrow a + 5d = 4 $\therefore S_{11} = \frac{11}{2}[a+a+10d]$ $S_{11} = \frac{11}{2}(2a + 10d)$ $= 11(a + 5d) = 11 \times 4 = 44$ **23.** In an AP, if common difference is 2, Sum of n terms is $49,7^{\text{th}}$ term is 13 then n = _____ **Dec-2012** (a) 0 (b) 5 (c) 7(d) 13 **Solution :** d = 2 $S_2 = 49$ $t_7 = a + 6d = 13$ \Rightarrow a + 6 × 2 = 13 $\Rightarrow a = 1$ $S_n = 49$ $\Rightarrow \frac{n}{2} \left[2a + (n-1)d \right] = 49$ $\Rightarrow n [2 + (n-1)2] = 49 \times 2$ $\Rightarrow 2n (1 + n - 1) = 49 \times 2$ \Rightarrow n (n) = 49 \Rightarrow n = 7

- 24. If the sum of the 4th term and the 12th term of an AP is 8, what is the sum of the first 15 terms of the progression? June-2013
 - a) 60 b) 120 c) 110 Solution : $t_4 + t_{12} = 8$ $\Rightarrow a + 3d + a + 11d = 8$

$$\Rightarrow 2a + 14d = 8$$

$$\Rightarrow a + 7d = 4$$

$$S_{15} = \frac{15}{2} [2a + 14d]$$

$$= 15(a + 7d)$$

$$= 15 \times 4 = 60$$

(b) 7

- 25. An Arithmetic progression has 13 terms whose sum is 143. The third term is 5 so the first terms is **Dec-2013**
 - (a) 4

(c) 9

(d) 2

d) 150

MULTIPLE

26. The sum of all natural numbers from 100 and 1000 which are multiple of 5 is: **Nov-2006** (a) 99,550 (b) 96,450 (c) 97,450 (d) 95,450 **Solution :** The series is 100, 105, 110, 115 1000 $\ell = 1000$ d = 105 - 100 = 5.a = 100 The sum of all natural numbers between 100 and 1000 which are multiple of 5 is $\frac{n}{2}(a+\ell) = \frac{181}{2}(100+1000)$ $t_n = a + (n-1)d$ = 99.550 $\Rightarrow 1000 = 100 + (n - 1)5$ \Rightarrow 900 = (n - 1)5 \Rightarrow n = 181 Answer \Rightarrow 99.550 27. Find the sum of all natural numbers: between 250 and 1,000 which exactly divisible by 3: Feb-2007 (b) 1,56,357 (a) 1,56,375 (c) 1,65,375 (d) 1.65.357 **Solution :** The numbers divisible by 3 between 250 and 1000 are 252, 255, 999 \therefore a = 252 d = 255 - 252 = 3 $t_n = 999$ \Rightarrow a+(n-1)d = 999 $\Rightarrow 252 + (n-1)3 = 999$ \Rightarrow (n-1)3 = 747 $\Rightarrow (n-1) = \frac{747}{3}$ \Rightarrow n = 250 $\therefore s = \frac{n}{2}(a+\ell)$ $=\frac{\frac{2}{250}}{2}(252+999)$ $=\frac{250}{2}(1251)=1,56,375$ 28. The number of integers from 1 to 100 which are neither divisible by 3 nor by 5 nor by 7 is **Jan- 2021** (b) 55 (c) 45 (d) 33 (a) 67

Not found question

AP APPLICATION

29. A contractor who fails to complete a building in a certain specified time is compelled to forfeit ₹ 200 for the first day of extra time required and thereafter forfeited amount is increased by ₹25 for every day If he loses ₹ 9,450, for how many days did he over-run the contract time? Nov-2007

(a) **19 days** (c) 23 days (d) 25 days (b) 21 days Solution : a = 200d = 25s = 9450n = ? $\therefore S = \frac{n}{2} [2a + (n-1)d]$ $\Rightarrow 9450 = 200n + \frac{25^n}{2}(n-1)$ $\Rightarrow 18900 = 400n + 25n^2 - 25n$ $\Rightarrow 25n^2 + 375n - 18900 = 0$ $\Rightarrow n^2 + 15n - 756 = 0$ $\Rightarrow n^2 + 36n - 21n - 756 = 0$ $\Rightarrow n(n+36) - 21(n+36) = 0$ \Rightarrow (*n* + 36) (*n* - 21) = 0 :n = -36 & n = 21**30.** A man employed in a company is promised a salary of ₹ 3,000 every month for the first year and an increment of \gtrless 1,000 in his monthly salary every succeeding year How much does the man earn from the company in 20 years? Feb-2008 (b) ₹ 27,50,000 (c) ₹ 19,10,000 (d) ₹ 7,90,000 (a) ₹ 30,00,000 **Solution :** a = 3000 d = 1000n = 20 years $= 20 \times 12$ months = 240 months $S = \frac{n}{2}[2a + (n-1)d]$ $S = \frac{\tilde{2}40}{2} [2 \times 3000 + (20 - 1)1000]$ S = 120 (6000 + 19000)

S = 120 (25000) = 30,00,000

31. On 1st January every year a person buys National Saving Certificates of value exceeding that of his last year's purchase by ₹ 100 After 10 years, he finds that the total value of the certificates purchased by him is ₹ 54,500 Find the value of certificates purchased by him in the first year : June-2008

```
(a) ₹ 6,000 (b) ₹ 4,000 (c) ₹ 5,000 (d) ₹ 5,500

Solution :

Let the value of certificates purchased by him in the first year be a
```

n = 10
d = 100
S =
$$\frac{n}{2}[2a + (n - 1)d]$$

⇒ 54500 = $\frac{10}{2}[2a + 9d]$
⇒ 54500 = 5[2a + 9 × 100]
⇒ 54500 = 5(2a + 900)
⇒ 10900 = (2a + 900)
⇒ 10,000 = 2a
⇒ 2a = 10,000

$\Rightarrow a = 5000$

- 32. The income of a person is ₹5,00,000 in the firm in the first year and he receives an increase of ₹15,000 per year for next 10 years. The total amount he receives in 10 years is: Dec-2016

 (a) ₹56,75,000
 (b) ₹72,50,000
 (c) ₹15,67,5000
 (d) None of these

 Solution:

 S_n after 10 years
 = n/2 [2a + (n 1)d]
 = 10/2 [2 × 500000 + (10 1)15000]

 = 5 [10,00,000 + 1,35,000] = ₹ 56,75,000

 33. A person pays ₹ 975 in monthly installments, each installments is less than former by ₹ 5. The amount of 1st installment is ₹ 100. In what time will the antire amount be paid? Lune
 - 33. A person pays < 9/5 in monthly installments, each installments is less than former by < 5. The amount of 1st installment is ₹ 100. In what time will the entire amount be paid? June 2022, Feb 2007
 - (a) 26 months (b) 15 months (c) Both (a) and (b) (d) 18 months **Solution :** Let the entire amount be paid in n months First installment (a) = 100d = - 5 $\therefore t_2 = a + d = 100 - 5 = 95$ Similarly, The series is 100, 95, 90, 80, upto n months Sum = $\frac{n}{2}[2a + (n-1)d]$ 975 = $\frac{n}{2}[2 \times 100 + (n-1)(-5)]$ 975 = $100n - \frac{n}{2} \cdot 5(n-1)$ ⇒ ⇒ $975 = \frac{200n - 5n^2 + 5n}{2}$ ⇒ $1950 = 200n - 5n^2 + 5n$ ⇒ $5n^2 - 205n + 1950 = 0$ ⇒ $n^2 - 41n + 390 = 0$ ⇒ $n^2 - 15n - 26n + 390 = 0$ ⇒ n(n - 15) - 26(n - 15) = 0⇒

$$: n = 15.26$$

But we take n = 15 months because after twenty one installments, the installments become negative. So ignored n = 26.

AP THEORETICAL

34. If the sum of 'x' terms of an Arithmetic Progression (A.P) is $3x^2 + 5x$ and its mth term is 164, then the value of m is : Dec-2015 a) 27 b) 28 c) 24 d) 26 Answer: $S_n = 3n^2 + 5n$ (a) Given Putting n =1, $S_1 = 3(1)^2 + 5(1) = 3 + 5 = 8$ n = 2, $S_2 = 3(2)^2 + 5(2) = 12 + 10 = 22$ $S_3 = 3(3)^2 + 5(3) = 27 + 15 = 42$ then, $T_1 = S_1 = 8$ $T_2 = S_2 - S_1 = 22 - 8 = 14$ $T_3 = S_3 - S_2 = 42 - 22 = 20$ A.P. series is 8, 14, 20 $= 8, d = 14 - 8 = 6, T_m = 164$ a = a + (m-1) dTm

10.10

$$\begin{array}{rcl}
164 &= 8 + (m-1) \times 6 \\
164 &= 8 + 6m - 6 \\
6m &= 164 + 6 - 8 \\
6m &= 162 \\
m &= \frac{162}{6} \\
m &= 27 \\
\hline
1 & 1 \\
\end{array}$$
are in arithmetic progress

35. If $\frac{1}{b+c}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ are in arithmetic progression then a^2 , b^2 , c^2 , are in progression June-2016

2016

a) Arithmetic Progression

b) Geometric Progression

c) Both in arithmetic and geometric Progression d) None of these. **Solution :**

$$\frac{1}{c+a} + \frac{1}{b+c} = \frac{1}{a+b} - \frac{1}{c+a}$$

$$\Rightarrow -\frac{1}{b+c} - \frac{1}{a+b} = -\frac{1}{c+a} - \frac{1}{c+a}$$

$$\Rightarrow \frac{1}{b+c} + \frac{1}{a+b} = \frac{2}{c+a}$$

$$\frac{a+b+b+c}{(b+c)(a+b)} = \frac{2}{c+a}$$

$$\Rightarrow \frac{a+2b+c}{ab+ac+b^2+bc} = \frac{2}{c+a}$$

$$\Rightarrow \frac{a+2b+c}{ab+ac+b^2+bc} = \frac{2}{c+a}$$

$$\Rightarrow ac + 2bc + c^2 + a^2 + 2ab + ac = 2ab + 2ac + 2b^2 + 2bc$$

$$\Rightarrow c^2 + a^2 = 2b^2$$

$$\Rightarrow a^2 - 2b^2 + c^2 = 0$$

$$\Rightarrow a^2 - b^2 - b^2 + c^2 = 0$$

(They are n A.P.)

Answer:

(c)
$$a = t_1 = S_1 = 2(1)^2 = 2$$

 $S_2 = 2(2)^2 = 8$
 $t_2 = S_2 - S_1 = 8 - 2 = 6$
 $d = t_2 - t_1 = 6 - 2 = 4$
Therefore, we have $a = 2$; $d = 4$
 $t_n = a + (n-1)d$
 $t_5 = a + 4d = 2 + (4 \times 4) = 18$

37. If pth term of an AP is q and its qth term is p, then what will be the value of (p+q)th term? **Dec 2022**

(a) 0 (b) 1 (c)
$$p + q - 1$$
 (d) 2 $(p + q - 1)$
Answer:
(a) Given $T_q = q$ and $T_q = p$
 $a + (p-1)d = q$ $a + (q-1)d = p$
 $a + pd - d = q$ ___(i) $a + qd - d = p$ ___(ii)
eq. (1) - eq.(2)
 $a + pd - d = q$
 $a + qd - d = p$
 $- - - + -$
 $- - - + -$
 $- - - + -$

$$d = \frac{-(p-q)}{(p-q)}$$

$$d = -1$$

$$Putting d = -1 \text{ in eq.}(1)$$

$$a + p(-1) - (-1) = q$$

$$a - p + 1 = q$$

$$Now T = \frac{a = p + q - 1}{p + q = a + (p + q - 1)d}$$

$$= p + q - 1 + (p + q - 1)(-1)$$

$$= p + q - 1 - p - q + 1$$

$$= 0$$

38. Find the ninth term of the series: $\sqrt{2}$, $5\sqrt{2}$, $9\sqrt{2}$,
 Dec-2008

 (a) $25\sqrt{2}$ (b) $31\sqrt{2}$ (c) $33\sqrt{2}$ (d) $52\sqrt{2}$

GP BASIC

39. The sum of how many terms of the sequence 256, 128, 64, _____ is 511 Dec-2008 (a) 8 (b) 9 (c) 7 (d) None of these

Solution :

$$a = 256$$

$$r = \frac{128}{256} = 0.5(r < 1)$$

$$S = \frac{a(1 - n)}{1 - r}$$

$$511 = \frac{256[1 - (0.5)^n]}{1 - 0.5}$$

$$\Rightarrow 511 \times 0.5 = 256[1 - (0.5)^n]$$

$$\Rightarrow 255.5 = 256[1 - (0.5)^n]$$

$$\Rightarrow 1 - (0.5)^n = 0.998047$$

$$\Rightarrow 1 - 0.998047 = (0.5)^n$$

$$\Rightarrow (0.5)^n = 0.001953$$

$$\Rightarrow (0.5)^n = (0.5)^9$$

$$\Rightarrow n = 9$$

40. In a GP the sixth term is 729 and the common ratio is 3, then the first term of GP is: **June-2013**

a) 2 b) 3 c) 4 d) 7 **Solution :** $t_6 = 729$ $ar^5 = 729$ $a(3)^5 = 729$ [r = 23] $a = \frac{(3)^6}{(3)^5}$ a = 3**41.** The 3rd term of a G.P. is $\frac{2}{3}$ and the 6th is 2/81, then the 1st term is **Nov-2018** $(b)\frac{1}{3}$ (c) 9 (a) 6 (d) 2 **Answer**: (a) Let 1st term of G.P. is 'a' and common Ratio is 'r' then Given $T_3 = \frac{2}{3}$ and $T_6 = \frac{2}{81}$ $ar^2 = \frac{2}{3}$(i) $ar^5 = \frac{2}{81}$(ii) eq.(2)/eq.(1) $\frac{ar^5}{ar^2} = \frac{\frac{2}{81}}{\frac{2}{3}}$ $r^3 = \frac{2}{81} \times \frac{3}{2} = >r^3 = \frac{1}{27} = r = \frac{1}{3}$

Putting
$$r = \frac{1}{3}$$
 in equation (i)
 $ar^2 = \frac{2}{3}^2$
 $a(\frac{1}{3})^2 = \frac{2}{3} = 2 a \times \frac{1}{9} = \frac{2}{3}$
 $= 2a = 6$
42. Sum the series $\frac{1}{5}, \frac{1}{5^2}, \frac$

10.12

(c) Let 1st term of G.P. = a
Common Ratio of G.P. = 'r'
Given T³ = ar³⁻¹ [: Tn = arⁿ⁻¹]
1 = ar²
ar² = 1 -----(1)
and T⁶ = ar⁶-1

$$\frac{-1}{8} = ar^{5}$$

ar⁵ = $\frac{-1}{8}$ -----(2)
Equation 2 / Equation 1
 $\frac{ar^{5}}{ar^{2}} = \frac{-1/8}{1}$

$$r^{3} = -\frac{1}{8}$$

$$r^{3} = \left(-\frac{1}{2}\right)^{3}$$

$$r^{3} = \left(-\frac{1}{2}\right)^{3}$$
Putting $r = -1/2$ in Equation -------(1)

$$\left(\frac{a}{8} - 7\right) = a = \left(-\frac{1}{2}\right)^{2} = -1$$

$$a \times -\frac{1}{4} = -\frac{1}{4}$$

$$a = -\frac{1}{4} \times \frac{1}{4}$$

$$a = -\frac{1}{4}$$
45. The largest value of n for which $\frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n}} < 0.998$ is. Dec-2021
(a) 9 (b) 6 (c) 7 (d) 8
Answer:
(d) The given series is a GP with $a = \frac{1}{2}$; $r = \frac{1}{2}$
Since $r < 1$, $S_{n=a}\left(\frac{1-r^{n}}{1-r}\right)$
Try the options,
Option (a) $\rightarrow 9$
If $n = 9$
 $S_{9} = \frac{1}{2}\left(\frac{1-(1/2)^{9}}{1-(1/2)}\right) = 0.998046875$
Option (b) $\rightarrow 6$
If $n = 6$
 $S_{6} = \frac{1}{2}\left(\frac{1-(1/2)^{2}}{1-(1/2)}\right) = 0.998175$
Option (c) $\rightarrow 7$
If $n = 7$
 $S_{7} = \frac{1}{2}\left(\frac{1-(1/2)^{2}}{1-(1/2)}\right) = 0.9921875$
Option (d) $\rightarrow 8$
If $n = 8$
 $S_{8} = \frac{1}{2}\left(\frac{1-(1/2)^{2}}{1-(1/2)}\right) = 0.99609375$
Clearly, option (d) is the answer as it is the largest value for which the sum of the series is less than 0.998.
46. The sum of first 8 terms of G.P is five times the sum of the first 4 terms. Find the common ratio? June 2022
(a) $\pm\sqrt{2}$ (b) 16 (c) $\pm\sqrt{20}$ (d) 4
Answer:
(a) $\pm\sqrt{2}$ (b) 16 (c) $\pm\sqrt{20}$ (d) 4
Answer:
(a) $\pm\sqrt{2}$ (b) 16 (c) $\pm\sqrt{20}$ (d) 4

$$\frac{a(r^{8}-1)}{(r-1)} = 5\frac{a(r^{4}-1)}{(r-1)}$$

$$r^{8}-1=5(r^{4}-1)$$

$$(r^{4})^{2}-(1)^{2}=5(r^{4}-1)$$

$$(r^{4}+1)(r^{4}-1)=5(r^{4}-1)$$

$$r^{4}+1=5$$

$$r^{4}=4$$

$$(r^{2})^{2}=(2)^{2} \Longrightarrow r=\pm \sqrt{2}$$
47. In a GP 5th term is 27 and 8th term is 729. Find its 11th term? Dec 2022
(a) 729 (b) 6561 (c) 2187 (d) 19683
Answer:

(d) In G.P. Given $T_5 = 27$ and $T_8 = 729$ $ar^4 = 27$ -----(1) ar7 = 729 -----(2) eq. (2) / eq. (1) $\frac{ar^7}{ar^4} = \frac{729}{27}$ $r^3 = 27 \Rightarrow r^3 = 3^3 \Rightarrow r = 3$ Putting r = 3 in equation (1), we get $a.3^4 = 27$ $a \times 81 = 27$ $a = \frac{27}{81}$ $a = \frac{1}{3}$ Now $T_{11} = ar^{11-1}$ [: $T_n = ar^{n-1}$] $= ar^{10}$ $= \frac{1}{3} \times (3)^{10}$ $= \frac{1}{3} \times 59049$ = 19683

INFINITE GP

- **48.** If the first term of a GP exceeds the second term by 2 and the sum to infinity is 50, the series is :
- (a) $10, 8, \frac{32}{5}$ (b) $10, 8, \frac{5}{2}$ (c) $10, \frac{10}{3}, \frac{10}{9}$... (d) None **49.** If $x = 1 + \frac{1}{3} + \frac{1}{3^2} + \cdots \dots \infty$, $y = 1 + \frac{1}{4} + \frac{1}{4^2} + \cdots \dots \infty$ find xy June-2008 (a) 2 (b) 1 (c) 8/9 (d) $\frac{1}{2}$
- 50. The first term of a GP where second term is 2 and sum of infinite term is 8 will be Dec-2012 (a) 6 (b) 3 (c) 4 (d) 1

Solution : $t_2 = 2$ $\Rightarrow ar = 2$ $\Rightarrow 3r = 2$ $\Rightarrow 4(1-r)r = 2$ $\Rightarrow 4(1-r)$

In G.P.

51. The sum of terms of an infinite GP is 15 And the sum of the squares of the term is 45 Find the common ratio

(a)
$$3/2$$
 (b) 1 (c) $-2/3$ (d) $2/3$
52. The number 2.353535 in $\frac{p}{q}$ form is:
(a) $\frac{235}{99}$ (b) $\frac{234}{99}$ (c) $\frac{230}{99}$ (d) $\frac{233}{99}$
53. If $y = 1 + x + x^2 + \dots \infty$ then $x =$
(a) $\frac{y-1}{y}$ (b) $\frac{y+1}{y}$ (c) $\frac{y}{y+1}$ (d) $\frac{y}{y-1}$
Answer:
(a) If $y = 1 + x + x^2 + \dots \infty$
 $a = 1, r = \frac{x}{1} = x$
 $y = \frac{1}{1-x} \left[S_{\infty} = \frac{a}{1-r} \right]$

y (1-x) = 1
y-xy = 1
xy = y-1
x =
$$\frac{y-1}{y}$$

54. Sum upto infinity of series.
(a) 19/24
(b) 24/19
(c) 5/24
(d) None
Answer:
(a) We know,
 $S^{\infty} = \frac{a}{1-r}, r<1$
Here, $\frac{1}{2} + \frac{1}{3^2} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{2^6} + \dots$
 $\Rightarrow (\frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^6} + \frac{1}{3^4} + \frac{1}{2^6} + \dots$
 $\Rightarrow (\frac{1}{2} + \frac{1}{2^3} + \frac{1}{2^6} + \frac{1}{3^4} + \frac{1}{2^6} + \dots$
 $\Rightarrow (a = \frac{1}{2}, r = \frac{1}{4} < 1); (a = \frac{1}{9}, r = \frac{1}{9})$
 $\Rightarrow (\frac{1}{2} + \frac{1}{2^3} + \frac{1}{9^8})$
 $\Rightarrow \frac{\frac{1}{2}}{\frac{1}{4} + \frac{1}{9}}$
 $\Rightarrow \frac{\frac{1}{2}}{\frac{1}{4} + \frac{1}{9}}$
 $\Rightarrow \frac{2}{1} + \frac{1}{8}$
 $\Rightarrow 2\frac{2}{1} + \frac{1}{8}$
 $\Rightarrow \frac{2}{12} + \frac{1}{18}$
 $\Rightarrow \frac{2}{14} + \frac{1}{9} + \frac{1}{9}$
 $\Rightarrow \frac{2}{14} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9}$
 $\Rightarrow \frac{2}{14} + \frac{1}{9} + \frac{$

55. The recurring decimal 2.7777..... can be expressed as : **Dec-2010** (a) 24/9 (b) 22/9 (c) 26/9 (d) 25/9

GP THEORETICAL

56. If $a^{1/x} = b^{1/y} = c^{1/z}$ and a, b, c are in G.P; the x, y, z are in : Feb-2007 (b) G. P. (a) A. P. (c) Both (a) & (b) (d) None **Solution :** $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}} = k$ Let $\therefore a^{\frac{1}{x}} = k$ $\Rightarrow a = k^x$ Similarly, $b = k^{y}$ $c = k^z$ ∴ a, b, & c are G. P k^{x}, k^{y}, k^{z} are in G. P $\therefore b^2 = ac$ $\Rightarrow (k^y)^2 = k^x \cdot k^z$ $\Rightarrow (k)^{2y} = k^{x+z}$ $\Rightarrow 2y = x + z$ \therefore In A.P series, 2b = a+c \therefore This is in A. P. 57. The first, second and seventh term of AP are in GP and the common difference is 2, the 2nd term of AP is : Nov-2007 (a) 5/2 (c) 3/2(b) 2 (d)1/2**Solution :** $t_1 = a$ d = 2 $t_2 = a + d = a + 2$

 $t_2 = a + d = a + 2$ $t_7 = a + 6d = a + 12$

a, a + 2, a + 12 are in G.P. $(a+2)^2 = (a+12)^a$ $\Rightarrow a^2 + 4 + 4a = a^2 + 12a$ $\Rightarrow 4(a+1) = 12a$ $\Rightarrow 3a - a = 1$ $\Rightarrow a + 1 = 3a$ $\Rightarrow 2a = 1 \qquad \Rightarrow a = \frac{1}{2}$ $\therefore t_2 = a + 2$ $=\frac{1}{2}+2$ $=\frac{5}{2}$ **58.** If a, b, c are in $\stackrel{2}{AP}$ and x, y, z are in GP, then the value of $x^{(b-c)} y^{(c-a)} z^{(a-b)}$ is: Feb-2008 (b) 0(c) b(c-a)(a) 1 (d) None **Solution :** Let a = 1 b = 2∴ 1, 2, 3 are in A. P. c = 3

and x = 1 y = 2The value of $(x)^{b-c} (y)^{c-a} (z)^{a-b}$ $= (1)^{-1} (2)^2 (4)^{-1} = 1 \times 4 \times \frac{1}{4} = 1$

59. The sum of three numbers in a geometric progression is 28. When 7, 2 and 1 are subtracted from the first, second and the third numbers respectively, then the resulting numbers are in arithmetic progression. What is the sum of squares of the original three numbers? July – 2021 (a) 510 (b) 456 (c) 400 (d) 336

Answer:

(**d**) Let the numbers in GP be $\frac{a}{r}$, a, and ar respectively.

Given that the sum is 28. Therefore, $\frac{a}{r}$ + a+ ar = 28 $\Rightarrow a(\frac{1}{r} + 1 + r) = 28 \dots$ Eq. (1)

Also , given that if we subtract 7,2, and 1 from the first , second And third terms respectively , we get an AP .

On subtracting 7,2, and 1 from first, second and third terms, we get:

$$(\frac{a}{r} - 7)$$
, (a-2), and (ar-1)

Since these numbers are in AP, we have (a-2)- $(\frac{a}{r} - 7)$

$$= (ar - 1) - (a-2)$$

$$\Rightarrow a - 2 - \frac{a}{r} + 7 = ar - 1 - a + 2$$

$$\Rightarrow a - \frac{a}{r} + 5 = ar - a + 1$$

$$\Rightarrow a - \frac{a}{r} - ar + a = 1 - 5$$

$$\Rightarrow 2a - \frac{a}{r} - ar = -4$$

$$\Rightarrow a \left(2 - \frac{1}{r} - r\right) = -4 \dots \text{ Eq.}(2)$$

Dividing Eq. (1) by Eq. (2), we get : $\frac{a(\frac{1}{r}+1+r)}{a(2-\frac{1}{r}-r)} = \frac{28}{-4}$

$$\Rightarrow \frac{1+1+r^2}{2r-1-r^2} = -7$$

$$\Rightarrow \frac{1+r+r^2}{2r-1-r^2} = -7$$

$$\Rightarrow 1+r+r^2 = -7(2r-1-r^2)$$

$$\Rightarrow 1+r+r^2 = -14r+7+7r^2$$

$$\Rightarrow 7r^2 + 7-14r-1-r-r^2=0$$

$$\Rightarrow 6r^2 - 15r + 6 = 0$$

Here, $a = 6; b = -15; c = 6$
 $a + \beta = -\frac{b}{a} = -\frac{-15}{6} = \frac{15}{6}$
 $a\beta = \frac{c}{a} = \frac{6}{6} = 1$
As per fastest method, $\left(\frac{15}{6\times 2} + X\right) \left(\frac{15}{6\times 2} - X\right) = 1$

$$\Rightarrow \left(\frac{15}{12}\right)^2 - X^2 = 1$$

 $X^2 = \left(\frac{15}{12}\right)^2 - 1=1.5625 - 1 = 0.5625$
 $X = \sqrt{0.5625} = 0.75$
 $a = \frac{15}{12} - 0.75 = 2$
 $\beta = \frac{15}{12} - 0.75 = 0.5$
Therefore, common ratio could either be 2, or 0.5.
Taking the common ratio to be 2, let's find out the value of a.
Putting the value of $r=2$ in Eq. (1), we'll get
 $a\left(\frac{1}{2} + 1 + 2\right) = 28$)
 $\Rightarrow a(3.5) = 28$
 $\Rightarrow a = \frac{28}{3.5} = 8$
Therefore, the GP will be $\frac{8}{2}$, $8, 8 \times 2=4, 8, 16$.
We can see that the sum of these numbers $= 4 + 8 + 16 = 28$
Subtracting 7.2, and 1 from first, second and third terms, we'll
get $4 - 7 = -3, 8 - 2 = 6, 16 - 1 = 15$.
These terms are clearly in AP as $15 - 6 = 6 - (-3) = 9$
The sum of squares of the numbers $4, 8, and 16 = 4^2 + 8^2 + 16^2$
 $= 336$.
Now, taking 0.5 as the common ratio, let's find out the value of a.
Putting the value of $r = 0.5$ in Eq. (1), we'll get;
 $a\left(\frac{1}{r} + 1 + r\right) = 28$
 $\Rightarrow a\left(\frac{1}{05} + 1 + 0.5\right) = 28$
 $\Rightarrow a\left(\frac{28}{3.5} = 8$
Therefore, the GP will be $\frac{8}{5}, 8, 8 \times 0.5 = 16, 8, 4$
We can see that the sum of these numbers $a = 16 + 8 + 4 = 28$.

a.

T We can see that the sum of these numbers = 16 + 8 + 4 = 28Subtracting 7, 2 and 1 from first, second, and third terms, we'll get 16 - 7 = 9, 8 - 2 = 6, 4 - 1 = 3. These terms are clearly in AP as 6-9=3-6=-3The sum of squares of the numbers 16, 8 and $4 = 16^2 + 8^2 + 4^2$ = 336

		PRODU	JCT OF GP		
60.	Find the product of : (243 (a) 1,024	b), (243) ^{1/6} , (243) ¹ (b) 27	^{/36} ∞, (c) 729	(d) 246	June-2011
	Solution :	2 (2) 1/36			
	$(243), (243)^{1/6}, (243)^{1/6}, (243)^{1+1/6}$	$(243)^{1/30} \dots \dots \infty$,		
	$=(243)^{\frac{1}{1-1/6}}$	a = 1	r = 1/6		
(1	x_{0} of x_{0}	$= (243)^{75}$	$= (3)^{5} = (3)^{6} = 7$	729	D 0011
01.	If 5^{ch} term of a GP is $\sqrt{3}$, a) 8	b) 27	c) 243	d) 9	Dec-2011
	Solution :				
	$t_5 = \sqrt[3]{3}$ $ar^4 = \sqrt[3]{3}$				
	$\therefore \text{ The product } 06 \\ \therefore a^9(r)^{36}$	first nine terms $= a$	1 ⁹ r ³⁶		
	$= (ar^4)^9$ = $(\sqrt[3]{3})^9$				
	- (13)	$-(3)^{9}$	$(3 - (3)^2 - 0)$		
62.	In a G.P. If the fourth terr	$-(3)^{\gamma}$ ns is '3' then the pr	oduct of first seven terr	ns is	June-2019
	a) 3 ⁵	b) 3 ⁷	c) 3 ⁶	d) 3 ⁸	
	Answer:				
	(b) In G.P. $T_4 = ar^{4-1}$ $ar^3 = 3$	=3			
	Product of 1 st sev	ven terms			
	$= (a.ar .ar^2.ar^2)$	ar ⁺ .ar ⁵ .ar ⁵)			
	$(a^{-}a^{-})^{7}$ = $(a^{-}a^{-})^{7}$				
63.	If the sum and product of series is	f three numbers in	G.P. are 7 and 8 respec	ctively. then 4 th	term of the Dec-2021
	(a) 6	(b) 4	(c) 8	(d) 16	
	Answer: (c) $t_n = ar^{n-1}$				
	Let the three te	erms of GP be $\frac{a}{a}$, a	, and ar respectively.		
	Since the produ	uct is 8, we have:			
	$\frac{a}{r} \times a \times ar = 8$				
	$=> a^{3} = 8$				
	$=> a = (8)^{\frac{1}{3}} = 2$	<i>a</i>			
	Also, it is given	that $\frac{a}{r} + a + ar = 7$			
	$\Rightarrow \frac{a+ar+ar^2}{r} = 7$				
	$\Rightarrow a + ar + ar^2 = 7r$				
	Putting the val $2+2r+2r^2-7$	ue of $a = 2$ above,	we get:		
	$\Rightarrow 2r^2 + 2r + 2r = 7$	0			
	$\Rightarrow 2r^2 - 5r + 2 = 0$				
	$\Rightarrow 2r^2 - 4r - r + 2 = 0$)			

Since 0.25 is not in the options, option (d) is the answer.

9/9 RULE

64. The sum of the series $1 + 11 + 111 + \dots$ to n terms is _____. June 2014, June-2015 (a) $\frac{1}{27} [10^{n+1} - 9n - 10]$ (c) $\frac{1}{81} [10^{n+1} - 9n - 10]$ (b) $10^{n+1} - 9n - 10$

(d) None of these

AM, GM

Feb-2008 **65.** Insert 4 AM's between 3 and 18 : (a) 12, 15, 9, 6 (b) 6, 9, 12, 15 (c) 9, 6, 12, 15 (d) 15, 12, 9, 6 **Solution :** ____, ____, ____, ____, 18 3, ____ a = 3 $t_6 = a + 5d$ 18 = 3 + 5d \Rightarrow 15 = 5d⇒ ⇒ d = 3 $t_2 = a + d = 3 + 3 = 6$ $t_3 = a + 2d = 3 + 6 = 9$ $t_4 = a + 3d = 3 + 9 = 12$ $t_5 = a + 4d = 3 + 12 = 15$ 66. Find two numbers whose AM is 10 and GM is 8 **Dec-2008** (a) [10,10] (b) [16,4] (c) [18,2] (d) [14,6] **Solution :** By Trial & Error Method $AM = \frac{10+10}{2} = 10$ $GM = \sqrt{(10)(10)} = 10 \neq 8$ Not possible. Again $AM = \frac{16+4}{2} = 10$ $GM = \sqrt{16 \times 4} = 8$: Answer (b) 67. Find the numbers whose arithmetic mean is 12.5 geometric mean is 10 **Dec-2011** (a) 20 and 5 (b) 10 and 5 (c) 5 and 4 (d) None of these **Solution :** By Trial and Error Method, $AM = \frac{20+5}{2} = 12.5$ $GM = \sqrt{20 \times 5} = 10$ **68.** If sum of 3 arithmetic means between "a" and 22 is 42, then "a" = $_$ **Dec-2011** a) 14 b) 11 c) 10 d) 6 **Solution :** ____, 22 $t_2 = a + d$ $t_5 = a + 4d$ ----- (i) 22 = a + 4d $t_3 = a + 2d$

$$S_{3} = \frac{n}{2}(a + \ell)$$

$$\Rightarrow 42 = \frac{3}{2}(2a + 4d)$$

$$\Rightarrow 42 = \frac{3}{2} \cdot 2(a + 2d)$$

$$\Rightarrow 42 = 3(a + 2d)$$

$$\Rightarrow 14 = a + 2d - \dots \quad (ii)$$

$$a + 2d = 14 \times 2 - \dots \quad (iii)$$

$$a + 4d = 22 - \dots \quad (iv)$$

$$\therefore 2a + 4d = 28$$

$$\pm a \pm 4d = 6^{22}$$

$$= 6$$

- **69.** If 'n' arithmetic means are inserted between 7 & 71 and 5th arithmetic mean is 27, then 'n' is equal to: June-2013
- a) 15 b) 16 c) 17 d) 18 **Solution :** Total terms = n + 2 $t_6 = 27$ a = 7 a = 5d = 27 \Rightarrow 5d = 27 - 7 $\Rightarrow d = 4$ $t_{n+2} = 71$ $\Rightarrow a + (n + 2 - 1)d = 71$ \Rightarrow a + (n + 1)d = 71 \Rightarrow 7 + (n + 1)4 = 71 \Rightarrow (n + 1)4 = 64 \Rightarrow (n + 1) = 16 \Rightarrow n = 15 70. If Geometric mean (G.M.) of a, b, c, d is 3, then G.M. of 1/a, 1/b, 1/c, 1/d will be Dec-2013 (a) 1/3(b) 3 (c) 81 (d) 1/810000 Answer: (a) G.M. of a, b, c, d $(G,M) = (a, b, c, d)^{\frac{1}{4}} = 3$

$$(0.111) = (d, 0, 0, 0, 0) = 3$$

a, b, c, d = 3⁴
a, b, c, d = 81
G.M of $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{a} = (\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d})^{\frac{1}{4}}$

$$= (\frac{1}{abcd})^{\frac{1}{4}}$$

$$= (abcd)^{-1 \times \frac{1}{4}}$$

$$= (81)^{-1/4}$$

$$= 3^{4x - 1/4}$$

$$= 3^{-1}$$

$$= (\frac{1}{3})$$

71. Find the two numbers whose geometric mean is 5 and arithmetic mean in 7.5. Dec-2015
a) 10 and 5
b) 13.9 and 1.91
c) 12 and 3
d) None of the above Answer:

(b)Let two Number a and b $\Delta M = \frac{a+b}{b}$

A.M.
$$= \frac{a+b}{2}$$

7.5
$$= \frac{a+b}{2}$$

a+b
$$= 15 \dots (1)$$

G.M.
$$= \sqrt{ab}$$

5
$$= \sqrt{ab}$$

25 (on squaring both side) = ab(2) Solving (1) and (2) we get a = 13.09 and b = 1.9172. Insert two arithmetic means between 68 and 260. **May-2018** a) 132, 196 b) 130. 194 c) 70, 258 d) None of the above **Answer**: (a) Let, two A.M's between 68 and 260 are A_1 , A_2 68, A₁, A₂,; 260 $d = \frac{b-a}{n+1}$ $d = \frac{260-68}{2+1} = \frac{192}{3} = 64$ $A_1 = a + d = 68 + 64 = 132$ $A_2 = a + 2d = 68 + 2 \times 64 = 68 + 128 = 196$ 73. If the AM and GM of two numbers is 6.5 and 6 the no.'s are : Nov-2019 (a) 3 and 2 (b) 9 and 4 (c) 81 and 16 (d) None **Answer:** (b) Let the two nos. be 'a' and 'b' $AM = \frac{a+b}{2};$ $GM = \sqrt{ab}$ $\sqrt{ab} = 6$ **On Squaring** a+b = 6.5ab= 36 -----Equation(2) a + b = 13a= 13-b -----Equation(1) Put Eq (1) in Eq (2) $b \times (13 - b) = 36$ $13b-b^2 = 36$ $b^2 - 13b + 36 = 0$ $b^2 - 9b - 4b + 36 = 0$ b(b-9) - 4(b-9) = 0b=9b=4a= 13-9 a= 13-4 a=4a=9So the two numbers are 4 and 9 74. If AM and HM for two numbers are 5 and 3.2, respectively. GM will be : Nov-2019 (a) 20 (b) 16 (c) 4(d) 5**Answer:** (c) We know that $(GM)^2 = AM \times HM$ Here $(GM)^2 = 5 \times 3.2$ $(GM)^2 = 16$ (GM) = 4

3 CONDITION

- **75.** Divide 30 into five parts in AP such that the first and last parts are in the ratio 2 :3 :**Feb-2007**
(a) $\frac{24}{5}, \frac{27}{5}, 6, \frac{33}{5}, \frac{36}{5}$ (b) $6, \frac{36}{5}, \frac{33}{5}, \frac{24}{5}, \frac{27}{5}$ (c) $\frac{27}{5}, \frac{24}{4}, \frac{36}{5}, \frac{33}{5}, 6$ (d) $6, \frac{24}{5}, \frac{27}{4}, \frac{33}{5}, \frac{36}{5}$ **76.** Find three numbers in GP such that their sum is 21, and the sum of their squares is 189 :
(a) 5,7,9 (b) 3,7,11 (c) 3,6,12 (d) 4,8,9
- 77. Three numbers in G.P. with their Sum 130 and their product 27,000 are:
 Nov -2020

 (a) 10,30,90
 (b) 90,30,10
 (c) (a) and (b) both
 (d) 10,20,30

 Answer:
 (a) 10,20,30
 (b) 10,20,30
 - (c) Let Three Nos. are in G.P.

 $\frac{a}{r}$, a, ar

1st condition $\frac{a}{r} \times \mathbf{a} \times \mathbf{ar} = 130 \dots \dots \dots (\mathbf{i})$ IInd condition $\frac{a}{2}$ × a × ar = 27,000 (ii) $a^3 = 27.000$ $a^3 = (30)^3$ a = 30 Putting $\mathbf{a} = 30$ in eg. (i) $\frac{30}{r} + 30 + 30r = 130$ $\frac{30}{r} + 30r = 100$ +30r = 100 $30\left(\frac{1}{r}+r\right) = 100$ $\frac{1+r^2}{r} = \frac{100}{20}$ $3 + 3r^2 = 10r$ $3r^2 - 10r + 3 = 0$ $3r^2 - 9r - r + 3 = 0$ 3r(r-3) - 1(r-) = 0(r-3)(3r-1)=0If r = 300If 3r - 1 = 0 $\mathbf{r} = 3$ r = 1/3Three Nos. are or $\frac{a}{r}$, a, ar $\frac{30}{\frac{1}{3}}$, 30, 30× $\frac{1}{3}$ $\frac{a}{r}$, a, ar $\frac{30}{3}$, 30, 30 × 3 10, 30, 90 90, 30, 10 78. Divide 69 into 3 parts which are in A.P. ad are such that the product of first two parts is 460: Nov-2020 (a) 20,23,26 (b) 21,23,25 (c) 19,23,27 (d) 22,23,24 **Answer:** (a) Let Three Nos. are in AP is (a-d),a ,(a+d) their sum = 69a-d+a+a+d=693a = 69a = 23The product of first two part = 460(a-d)a = 460(23-d)23 = 460 $23-d = 20 \Rightarrow d = 3$ Nos. are a-d, a, a+d 23-3, 23, 23+3 20, 23, 26 SUM OF SERIES **79.** The sum of n terms of the series $1 + (1+3) + (1+3+5) + \dots$ is: **June-2017** b) $\frac{n(n+1)(n+2)}{6}$ a) $\frac{n(n+1)(2n+1)}{6}$ c) $\frac{n(n+1)(2n+1)}{3}$ d) None of these Answer: (a) Given Series $1 + (1 + 3) + (1 + 3 + 5) + \dots n$ term $= 1 + 4 + 9 + \dots n$ term

$$= 1^{2} + 2^{2} + 3^{2} + \dots + n^{2}$$

= $\sum_{n=1}^{\infty} n^{2}$
= $\frac{n(n+1)(2n+1)}{6}$

MISCELLANEOUS QUESTIONS

80. If 9th and 19th term of an Arithmetic Progression are 35 and 75, respectively, then its 20th term is : June 2023 (a) 78 (b) 79 (c) 80(d) 81 Answer: (b) Let Ist term and common difference of A.P are 'a' and 'd' respectively Given $T_{19} = 75$ $T_9 = 35$ and a + 18d = 75 ____(2) a + 8d = 35 (1) Eq(2) - Eq(1)d + 18d = 75+ 8d = 3510d = 40d = 4 Putting d = 4 in equation (1) we set $a + 8 \times 4 = 35$ a + 32 = 35a = 3 Now $T_{20} = a + 19d = 3 + 19 \times 4 = 3 + 76 = 79$ **81.** How Many number between 74 and 25,556 are divisible by '5' June 2023 (a) 5090 (b) 5097 (c) 5095 (d) 5075 Answer: (b) Number b/w 74 and 25556 are divisible by 5 are 75, 80, 85, 25555 Here I^{st} term (a) = 75 Common difference (d) = 80 - 75 = 5Last term (l) = 25555 No. of term n = $\frac{l-a+b}{d}$ = $\frac{25555-75+5}{5}$ = 509782. If 4th, 7th and 10th terms of a Geometric Progression are p, q and r, respectively, then : June 2023 (b) $p^2 = qr$ (c) $q^2 = p^r$ (a) $p^2 = q^2 + 2^r$ (d) pqr+pq+1=0

Answer.

(c) In G.P.T₄ = P, T₇ = q, T₁₀ = r

$$ar^3 = P - (1) ar^6 = q - (2) ar^3 = r - (3)$$

Multiply by (1) & (3)
 $ar^3 \times ar^9 = pr$
 $a^2r^{12} = pr$
 $(a + b)^2 = pr$
 $(q)^2 = pr$
 $q^2 = pr$

83. Find the 17th term of an AP series if 15th and 21st terms are 30.5 and 39.5 respectively. dec

10.24 A.P. & G.P. **GOPAL BHOOT** 2023 (a) 33.5 (b) 35.5 (c) 36.0 (d) 38.0 Answer: (b) In A.P series $T_{15} = 30.5$ and $T_{21} = 39.5$ Given a + 14d = 30.5 - (1) & a + 20d = 39.5 - (2)eq. (2) - eq.(1)d + 20d = 39.5a + 14d = 30.56d = 9 $d = \frac{9}{6} = 1.5$ Putting d = 1.5 in equation (i) $a + 20 \times 1.5 = 39.5$ a + 30 = 39.5a = 39.5 - 30a = 9.5 Now $T_{12} = a + 16d$ $= 9.5 + 16 \times 1.5$ = 9.5 + 24= 33.5**84.** If nth term of AP series is 7n-2, then sum of 'n' terms is : dec 2023 (a) $0.5(7n^2+2n)$ (b) $0.5(7n^2-3n)$ (c) $0.5(7n^2+3n)$ (d) $0.5(7n^2-2n)$ Answer. (c) Given n^{th} term of A.P. (Tn) = (7n - 2)n = 1, $T_1 = 7 \times 1 - 2 = 5$ Putting " $T_2 = 7 \times 2 - 2 = 12$ n = 2, " n = 3. $T_3 = 7 \times 3 - 2 = 19$ A.P series is 5, 12, 19, Here, a = 5, d = 12 - 5 = 7, n = nSum of 'n' terms $S_n = \frac{n}{2} [2a + (n-1)d]$ $=\frac{\tilde{n}}{2}[2 \times 5 + (n-1)7]$ $=\frac{\dot{n}}{2}[10+7n-7]$ $=\frac{n}{2}[7n+3]$ $= 0.5[7n^2 + 3n]$ 85. Given an infinite geometric series with first term ' α ' and common ratio 'r'. If its sum is 4 and the second term is $\frac{3}{4}$, then one of correct option is : dec 2023 (b) $\alpha = 3$ and $r = \frac{3}{4}$ (c) $\alpha = 3$ and $r = \frac{1}{4}$ (d) $\alpha = 1$ and $r = \frac{1}{2}$ (a) $\alpha = 1$ and $r = \frac{1}{4}$ **Answer**: (c) Let GP series ia a, ar, ar^2 , Let 1^{st} term (a) = a, Common Ratio (r) = r Given, Sum = 4 $T_2 = \frac{3}{4}$ ar $^{2-1} = \frac{3}{4}$ ar $= \frac{3}{4}$ $a = \frac{3}{4r}$ (2) $\frac{a}{1-r} = 4$ a = 4(1 - r)

a = (4 - 4r) - (1)From eq. (1) and (2)

> $4 - 4r = \frac{3}{4r}$ $16r - 16r^2 = 3$

	$ \begin{array}{r} 16r^2 - 16r \\ 16r^2 - 12r - \\ 4r(4r - 3) - \\ (4r - 3) (4r \\ If 4r - 3 \\ r = 3 \\ Put r = 3/4 \\ 1 \end{array} $	+ 3 = 0 + 4r + 3 = 0 1 (4r - 3) = 0 - 1) = 0 = 0, if 4r - 1 /4 & r = 1/4 in eq. (1) a = 4	= 0 $4 - 4 \times \frac{3}{4} = 4 - 3 = 1$	
	Put $r = \frac{1}{4}$ in e	eq. (1) $a = 4 - 4$	$\frac{1}{4} \times 4 = 3$	
86 Find th	Option (c) is	correct	a data 1+7+12+10 +v-225	dec 2023
(a) 56		(b) 63	g data.1+7+13+19+ $x=223$ (c) 49	(d) 42
Answe	er:	(1) 11		(-)
(c)) Series, $1 + 7 + 7$	+ 13 + 19 +	+ $x = 225$	
	I=x, a=1,	d = 7 - 1 = 6,	$S_n = 225, n = ?$	
	$S_{n=\frac{n}{2}} 2a$	a + (n - 1)d		
	225 = 3	$\frac{n}{2} 2 \times 1 + (n-1) $)6	
	450 = r 450 = n 450 = 6 6n2 - 4r 2(3n2 - 3n2 - 2r 3n2 - 27 3n(n - 9) (2) (n - 9) (2) (2) (n - 9) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	$a_{1}^{2'} = 6n - 6]$ $(6n - 4)$ $n^{2} - 4n$ $n - 450 = 0$ $2n - 225) = 0$ $n - 225 = 0$ $n + 25n - 225 = 0$ $n + 25n - 225 = 0$ $3n + 25) = 0$	= 0 0	
If	n - 9 = 0		and if $3n + 25 = 0$	
n	= 9		3n = -25	
			n = -25/3	
W	e know that.		(impossible)	
I =	= a + (n - 1)d			
X =	= 1 + (9 – 1)6			
=	$= 1 + 8 \times 6$			
=	= 1 + 48			
Х	= 49			

	Answer Key																		
1	b	2	a	3	с	4	a	5	b	6	a	7	b	8	a	9	с	10	d
11	с	12	d	13	с	14	d	15	с	16	с	17	b	18	с	19	a	20	a
21	a	22	a	23	с	24	a	25	d	26	a	27	a	28	с	29	b	30	a
31	с	32	a	33	b	34	a	35	a	36	с	37	a	38	с	39	b	40	b
41	a	42	a	43	с	44	с	45	d	46	a	47	d	48	a	49	a	50	с
51	d	52	d	53	a	54	a	55	d	56	a	57	a	58	a	59	d	60	с
61	b	62	b	63	d	64	с	65	b	66	b	67	a	68	d	69	a	70	a
71	b	72	a	73	d	74	с	75	a	76	с	77	с	78	a	79	a		

CHAPTER SET THEORY

PAST YEAR QUESTIONS

Out of 20 members in a family, 11 like to take tea and 14 like coffee Assume that each one 1. likes at least one of the two drinks Find how many like both coffee and tea : Nov-2006 (a) 2 (b) 3 (c) 4 (d) 5 Ans:-A \cup B = 20 A = 11B = 14A + B - AB = 2011 + 14 - AB = 20AB = 5In a group of 70 people, 45 speak Hindi, 33 speak English and 10 speak neither Hindi nor 2. English Find how many can speak both English as well as Hindi: Feb-2007 (b) 19 (c) 18; (d) 28 (a) 13 **Ans:-** Hindu = 45 = AEnglish = B = 33 $\overline{A} \cap \overline{B} = 10$ Now $A \cup B = (\overline{A} \cap \overline{B})^C = S - (\overline{A} \cap \overline{B})$ = 70 - 10 = 6045 + 33 - AB = 60AB = 18A + B - AB = 60In a survey of 300 companies, the number of companies using different media - Newspapers 3. (N), Radio (R) and Television (T) are as follows : n(N) = 200, n(R) = 100, n(T) = 40, $(N \cap R)$ $= 50, n(R \cap T) = 20, n(N \cap T) = 25 and n(N \cap R \cap T) = 5$ **May-2007** Find the numbers of companies-using none of these media : (a) 20 companies (b) 250 companies (c) 30 companies (d) 50 companies T = 40 NT = 25 NR = 50 RT = 20**Ans:-** N = 200R = 100NRT = 5 $N \cup R \cup T = N + R + T - NR - NT - RT + NRT = 200 + 100 + 40 - 50 - 20 - 25 + 5 = 250$ $= (N \cup R \cup T)^{c} = 300 - 250 = 50$ None media = $\overline{N} \ \overline{R} \ \overline{T}$ In a town of 20,000 families it was found that 40% families buy newspaper A, 20% families 4. buy newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C If 2% families buy all the three newspapers, then the number of families which buy A only is: Nov-2006 (b) 6300 (a) 6600 (c) 5600 (d) 600 Ans:-A = 40%B = 20%C = 10%AC = 4%BC = 3% ABC = AB = 5%2% Only $A = A \quad \overline{B} \quad \overline{C} = A - AB - AC + ABC$ =40-5-4+2=33%No of families = 33% of 2000 = 6600. Out of total 150 students, 45 passed in Accounts, 30 in Economics and 50 in Maths, 30 in 5. both Accounts and Maths, 32 in both Maths and Economics, 35 in both Accounts and Economics, 25 students passed in all the three subjects Find the numbers who passed at least in any one of the subjects : Feb-2008 (a) 63 (b) 53 (c) 73 (d) None Ans. : A = Account = 45B = Economics is = 30C = Maths = 50AC = 30BC = 32AC = 35ABC = 25 $A \cup B \cup C = A + B + C - AB - AC - BC + ABC = 53$ 6. If $A = \{p, q, r, s\} B = \{q, s, t\} C = \{m, q, n\}$ Find $C - (A \cap B)$ **Dec-2008** (b) $\{p, q\}$ (a) $\{m, n\}$ (c) $\{r, s\}$ (d) $\{p, r\}$ **Ans:** $A \cap B = \{q,s\}$ $C - (A \cap B) = m, n$ 7. If $A = \{x : x^2 - 3x + 2 = 0\}$, $B = \{x : x^2 + 4x - 12 = 0\}$, then B – A is Equal to **June-2010** (a) {-6} (b) $\{1\}$ (c) $\{1,2\}$ (b) $\{2, -6\}$ Ans:-(A) $x^2 - 3x + 2 = 0$ (B) $x^2 - 4x + 12 = 0$ (x-2)(x-1) = 0(x+6)(x-2)=0x = 2, 1x = -6, 2

 $A = \{2, 1\}$ $B = \{-6, 2\}$ $\therefore \mathbf{B} - \mathbf{A} = \{-6\}$ 8. For any two sets A and B, $A \cap (A' \cup B) = 0$, where A' represent the complement of the set A **Dec-2010** (a) $A \cap B$ (b) $A \cup B$ (c) $A' \cup B$ (d) None of these Ans:- $\overline{A} \cup B =$ shaded area $A \cap \text{shaded} = A \cap B$ 9. If $A \subset B$, then which one of the following is true **Dec-2010** (a) $A \cap B = B$ (b) $A \cup B = B$ (c) $A \cap B = A^1$ (d) $A \cap B = \Phi$ Ans:- $A \subseteq B$ So, $A \cup B = B$ Option (b) is correct 10. There are 40 students, 30 of them passed in English, 25 of them passed in Maths and 15 of them passed in both Assuming that every Student has passed at least in one subject How many student's passed in English only but not in Maths **June-2011** (a) 15 (b) 20 (c) 10 (d) 25 **Ans:**- E = 30M = 25EM = 15 $E \overline{M} = E - EM = 30 - C$ 15 = 15**11.** If A = (1, 2, 3, 4, 5), B = (2, 4) and C = (1, 3, 5) then $(A - C) \times B$ is **Dec -2011** a) $\{(2, 2), (2, 4), (4, 2), (4, 4), (5, 2), (5, 4)\}$ b) $\{(1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5, 4)\}$ c) $\{(2, 2), (4, 2), (4, 4), (4, 5)\}$ d) $\{(2, 2), (2, 4), (4, 2), (4, 4)\}$ **Ans:**- $A - C = \{2, 4\}$ $B = \{2, 4\}$ $(A - C) \times B = \{(2, 2), (2, 4), (4, 2), (4, 4)\}$ 12. For any two sets A and B the set $(A \cup B')$ is Equal to (where' denotes complement of the set) **Dec-2011** a) B – A c) A' - B'b) A - Bd) B' – A **Ans:**- $(A \cup \overline{B})^{C} = \overline{A} \cap B = B - A$ 13. The number of proper sub set of the set $\{3, 4, 5, 6, 7\}$ is June-2012 (a) 32 (b) 31 (c) 30(d) 25 **Ans:** $2^n - 1 = 2^5 - 1 = 31$ For a group of 200 persons, 100 are interested in music, 70 in photography and 40 in 14. swimming, Further more 40 are interested in both music and photography, 30 in both music and swimming, 20 in photography and swimming and 10 in all the three How many are interested in photography but not in music and swimming? **Dec-2012** (b) 15 (a) 30 (c) 25 (d) 20 **Ans:-** M = 100 P = 70S = 40 MP = 40 MS = 30 PS = 20 MPS = 10 $P\overline{M} \overline{S} = P - PM - PS + PMS = 70 - 40 - 20 + 10 = 20$ Of the 200 candidates who were interviewed for a position at call centre, 100 has a two-15. wheeler, 70 has a credit card and 140 had a mobile phone, 40 of them had both a two-wheeler and a credit card, 30 had both a credit card and a mobile phone, 60 had both a two-wheeler and a mobile phone, and 10 had all three. How many candidates had none of the three? Dec-2013 (a) 0(b) 20 (d) 18 (c) 10 **Ans.** : Two wheeler = A = 100Credit Card = B = 70Mobile = C = 140AB = 40BC = 30AC = 60

$$ABC = 10$$

$$A \cup B \cup C = A + B + C - AB - BC - AC + ABC$$

$$= 100 + 70 + 140 - 40 - 30 - 60 + 10$$

$$= 190$$
none = $\overline{A} \ \overline{B} \ \overline{C} = (A \cup B \cup C)^{C}$

$$= S - (A \cup B \cup C) = 200 - 190 = 10$$

16.	In a class of 50 students, 3 of such students who opted	5 opted for Mathemat for both Mathematics	ics and 37 opted for Cos and Commerce are :	ommerce. T	The number Dec-2013
	a) 13	b) 15	c) 22	d) 28	
	Ans. : $n = 50$				
	Mathematics $= 35$				
	Commerce = 37				
	Maths ∩ Commerce	e ?			
	$\mathbf{}$				
	Maths Comme	erce			
	$P(Maths \cup Comme$	rce) $= P(Maths)$	+ P(Commerce)		
		- P(Maths (Commerce)		
	50	= 35 + 37 - 37	$-P(M \cap C)$		
	$P(M \cap C)$	= 72 - 50			`
17	The number of subsets of t	he act formed has the se	uand Allahahad is .	= 22 (Ans	5.) Dec 2016
1/.	The number of subsets of t (a) 128	ne set formed by the v	vord Allanabad 1s :	(4) (4)	Dec-2016
10	(a) 120	(0) 10 25% students can pla	(c) 52	(u) 04 tudanta con	nlay only
10.	table tennis and the remain can play cricket?	ning students can play	y both the games. In a	ll how mai	ny students Dec-2015
	a) 55	b) 44	c) 36	d) 28	
19.	In a group of students 80	can speak Hindi, 60 d	can speak English and	40 can spe	ak English
	and Hindi both, then numb	er of students is:		J	une-2017
	a) 100	b) 140	c) 180	d) 60	
20.	The no. of subsets of the se	et {3, 4, 5} is :]	Dec-2018
	a) 4	b) 8	c) 16	d) 32	
21.	In a class of 80 students, 5	0 like maths and 40 li	ke statistics then the nu	umber if stu	idents who
	like both maths and statisti	cs is :]	Dec-2018
	a) 10	b) 20	c) 30	d) 40	
22.	In a class of 35 students, 2 likes to pay at least one of	4 like to pay cricket a the two games. How	nd 16 like to play footb many students like to	all. Also ea play both	ach student cricket and
	football? : Dec-2017	(b) 11	(a) 10	(1)	
22	(a) 5	(D) 11	(c) 19	(d) 8	0/ familias
43.	buy newspaper B and 10% and C and 4% buy A and	families buy newspa c if 2% families buy	all the three newspaper	y A and B, s, then the	3% buy B number of
	iamines which buy A only	18; (b) 6200	(a) 5600	(d) (00	1ay-2018
24	$\begin{array}{c} (a) \ 0000 \\ \text{The numbers of measurement} \end{array}$	(0) 0300	(c) 5000	(a) 600	J on 2019
24.	(a) 22	$(b) 21$ set 01 the set $\{3, 4, 5, (b), 21\}$	(0, 7) 1S:	(4) 25	lay-2018
25	(a) 52 If $A = \{1, 2\}$ and $B = \{2, 4\}$	(0) 51 Determine the num	(C) 30	$(\mathbf{u}) \ 2\mathbf{J}$	Nov 2018
43.	$II A = \{1, 2\}$ and $D = \{3, 4\}$	(b) 16	(c) 5	(d) 6	107-2010
26	(a) = 5 If $A = \{1, 2, 3, 4, 5, 6, 7\}$	(0) 10 and B = $\{2, 4, 6, 8\}$ C	(C) J ardinal number of A $_{-}$ F	$(\mathbf{u}) 0$	Nov-2018
20.	$n A = \{1, 2, 3, 4, 5, 0, 7\}$ a	(h) 3	(c) 9	(d) 7	107-2010
27	$f(a) = \{1, 2, 3, 4, 5, 6, 7, 8\}$	(b) 5 9}	(\mathbf{C})	(u) /	une . 2019
<i></i> /•	$\mathbf{B} = \{1, 2, 3, 4, 5, 7, 8\}$, ~ J		J	un-401/
	$C = \{2, 6, 8\}$ then find (Δ .	- B)U C			
	(a) $\{2, 6\}$	(b) $\{2, 6, 8\}$	$(c) \{2, 6, 8, 9\}$	(d) None	
28.	The no. of subsets of the se	$\{3, 4, 5\}$ is:	(, (_, 0, 0,))		une-2019
	(a) 4	(b) 8	(c) 16	(d) 32	

29. Two finite sets respectively have x and y number of elements. The total number of subsets of

	the first is 56 more than	n the total number	of subsets of the /sec	ond. The value of x and y
	respectively.			Nov – 2020
	(a) 6 and 3	(b) 4 and 2	(c) 2 and 4	(d) 3 and 6
30.	The number of items in	the set A is 40; in	the set B is 32; in the s	set C is 50; in both A and B
	is 4, in both A and C is	5; in both B and C	C is 7 in all the sets 2.	How many are in only one
	set?		() 100	Nov - 2020
	(a) 110	(b) 65	(c) 108	(d) 84
31.	The set of cubes of the n	atural number 1s:		Nov – 2020
	(a) A null set		(b) A finite set	6.4 1
20	(c) An infinite set	al number is	(d) A finite set	of three numbers
34.	(a) Null set	(b) A finite set	(a) An infinita	Jan - 2021 (d) Singlaton Sat
33	(a) Inull Set	(U) A fiffice set	(C) All IIIIIIIC (C) subsets of U. If $p(U)$	(0) Singleton Set
55.	N($A \cap B$) = 95 and n(B)	-100 then $n(\overline{A})$	(\overline{R}) is equal to $(\overline{A} \text{ and } \overline{A})$	\overline{R} are the complement of A
	and R respectively).	$=$ 170, then $\Pi(\Lambda \Pi)$		D are the complement of $AJuly = 2021$
	(a) 400	(b) 200	(c) 300	(d) 245
34.	Out of a group of 20 tea	chers in a school	10 teach Mathematics	9 teach Physics and 7 teach
c	Chemistry, 4 teach M	athematics and F	Physics but none tea	ch both mathematics and
	Chemistry. How many te	each Chemistry and	d Physics; how many te	each only Physics? Dec-
	2021 Ans.(a)	,		in i y y i i i i
	(a) 2, 3	(b) 3, 2	(c) 4, 6	(d) 6, 4
35.	Two finite sets have x a	nd y number of el	ements. The total num	ber of subsets of first is 56
	more than the total numb	per of subsets of se	cond. The value of x ar	nd y is: June 2022
	(a) 6 and 3	(b) 4 and 2	(c) 2 and 4	(d) 3 and 4
36.	Given $A = \{2, 3\}, B = \{4, 3\}$	$\{5\}, C = \{5, 6\}$ the	en A x ($B \cap C$) is: Jur	ne 2022
	(a) $\{(2, 5), (3, 5)\}$	(b) $\{(5, 2), (5, 3)\}$	$3) \} (c) \{(2,3), (5,5)\}$)} (d) None of these
37.	If the universal set $E = \{$	x: x is a positive	integer < 25 }, A = {2,	$6, 8, 14, 22\}, B = \{4, 8, 10,$
	14} June 2022			
	(a) $(A \cap B)' = A' \cup B'$		(b) $(A \cap B)' = A$	$\mathbf{A}^{\prime} \cap \mathbf{B}^{\prime}$
20	(c) $(A' \cap B') = \varphi$		(d) None of the	se
30.	If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$	$\beta \text{ and } \mathbf{B} = \{2, 4, 6, 7\}$,9} then now many pro	oper subset of $A \cap B$ can be
	created? Dec 2022	(b) 15	(a) 22	(d) 31
30	(a) 10 The number of subset of	(0) 13 the set $(0, 1, 2, 3)$	(0) 52	(u) 51
57.	(a) 2	(b) 4	(c) 8	(d) 16
40.	A survey shows that 7	4% of the Indian	like grapes wherea	s 68% like bananas What
	percentage of the Indiar	like both grapes	and bananas if everyb	ody likes either fruit? June
	2023	<i>6</i> 1	,	
	(a) 42% (b) 26%	(c) 58%	(d) 62%
	Answer :			
	(a) Let A→ Grapes	Let Tot	al Fruits = 100	
	B→ Banana	's n(A	$A \cup B) = 100$	
		n(A	A) $= 74\% \text{ of } 100$	= 74
		n(l	B) = 68% of 100	= 68
		n(.	$A \cap B) = ?$	
	We know that			
	$n(A \cup B) =$	n(A) + n(B) - n(A)	<u>∩В)</u>	
	$100 = (4 \circ P)$	$14 + 68 - n(A \cap B)$)	
	$n(A \cap B) =$	142 - 100		
	$\Pi(A \cap B) =$	42 ng lika hath angras	and hanana's $= 420/$	
41	If $A - \{a, b, c\}$ $R - \{b, c\}$	d and $C - \int a b$	and banana $S = 42\%$ s) then $(\Delta_R) \times (R \cap C)$	is equal to June 2023
71.	$(a) \{(a,d) (c,d)\}$ (b)	$\{(a,c) (a,d)\}$	(c) $\{(c, a), (d, a)\}$	(d) $\{(a c) (a d) (b d)\}$
	Answer :	/ [[",",","]]	() [(0,0),(0,0)]	

```
(b) Here A = \{a,b,c\}
                    B = \{b, c, d\}
                    C = \{a, d, c\}
               A - B = \{a, b, c\} - \{b, c, d\} = \{a\}
              B \cap C = \{b,c,d\} \cap \{a,d,c\} = \{c,d\}
              (A-B)\times (B\cap C) = \{a\}\times \{c,d\}
                                 = \{(a,c)\}.(a,d)
42. In a survey of 100 boys it was found that 50 used white shirts, 40 red shirts and 30 blue shirts.
      20 were habituated in using both white and red shirts. 15 were using both red and blue shirts
      10 were using blue and white shirts. Find the number of boys who are using all colours: dec
      2023
      (a) 20
                                (b) 25
                                                           (c) 30
                                                                                         (d) 35
      Answer:
         (b) Here, A \rightarrow for white shirt, B \rightarrow for red shirt, C \rightarrow for blue shirt.
                    n(A) = 50, n(A \cap B) = 20, n(A \cup B \cup C) = 100
                    n(B) = 40, n(B \cap C) = 15, n(A \cap B \cap C) = ?
                   n(C) = 30, n(C \cap A) = 10,
              We know that.
              n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)
                  100 = 50+40 + 30 - 20 - 15 - 10 + n(A \cap B \cap C)
                  100 = 120 + 45 + n(A \cap B \cap C)
                  n(A \cap B \cap C) = 100 + 45 - 120
                  n(A \cap B \cap C) = 25
43. If A = \{2,4\} and B = \{1,2,3\} then (A \cup B) × (A \cap B) is equal to : dec 2023
                                                           (b) \{(1,2),(2,2),(2,3),(2,4)\}
      (a) \{(1,2),(2,2),(3,2)\}
      (c) \{(2,1),(2,2),(2,4)\}
                                                           (d) \{(1,2),(2,2),(3,2),(4,2)\}
      Answer :
         (d) Here, A = \{2,4\} and B = \{1,2,3\}
              A \cup B = \{2,4\} \cup \{1,2,3\}
                     = \{1, 2, 3, 4\}
              A \cap B = \{2,4\} \cap \{1,2,3\}
                     =\{2\}
              (A \cup B) \times (A \cap B) = \{1, 2, 3, 4\} \times \{2\}
                                   = \{(1,2), (2,2), (3,2), (4,2)\}
44. If B = \{1, 2, 3, 4, 5\}, then the number of proper subsets of B is : dec 2023
      (a) 120
                                (b) 30
                                                           (c) 31
                                                                                         (d) 32
      Answer :
          (c) Given B = \{1, 2, 3, 4, 5\}
              N(B)
                        = 5
              No. of Proper Subset = 2^n - 1
                                       = 2^5 - 1
                                        = 32 - 1
                                        = 31
45. If A = {1,2}, B = {3,4}, C = {5,6} then the value of A×(B \cup C) dec 2023
      (a){(1,2),(3,4),(5,6)}
                                                           (b)\{(1,3),(2,3),(1,4),(2,4),(1,5),(2,5),(1,6),(2,6)\}
      (c){(1,3),(2,3),(1,4),(2,4),(2,5),(1,5)}
                                                           (d){(3,1),(2,3),(4,1),(2,4),(2,5),(1,5),(1,6),(2,6)}
      Answer :
         (b) If A = \{1,2,\}B = \{3,4,\}C = \{5,6,\}
              B\cup C = \{3,4\}\cup\{5,6\}
                    = \{3,4,5,6\}
               A \times (B \cup C) = \{1, 2, \} \times \{3, 4, 5, 6\}
                            = \{(1,3)(1,4)(1,5)(1,6)\}
                                (2,3)(2,4)(2,5)(2,6)
```

	Answer Key																		
1.	d	2.	с	3.	d	4.	a	5.	b	6.	a	7.	a	8.	a	9.	b	10.	a
11.	d	12.	a	13.	b	14.	d	15.	с	16.	с	17.	с	18.	b	19.	a	20.	b
21.	a	22.	a	23.	a	24.	b	25.	b	26.	a	27.	с	28.	b	29.	a	30.	с
31.	С	32.	c	33.	d	34.	a	35.	a	36.	a	37.	a	38.	b	39.	d		

CHAPTER FUNCTIONS

PAST YEAR QUESTIONS

1.	Let R is the set of real num $f(x) = \frac{2}{3} + \frac{2}{3} + \frac{1}{3} $	nbers, such that the function $2 \sum_{i=1}^{n} \frac{1}{i} \left(\int_{-\infty}^{\infty} \frac{1}{i} \int_{-\infty}^{\infty} \frac{1}{i} \left(\int_{-\infty}^{\infty} \frac{1}{i} \int_{-\infty}^{\infty}$	unction f: $R \rightarrow R$ and g	$: R \rightarrow R$ are defined by
	$f(x) = x^2 + 3x + 1$ and $g(x) =$	= 2x - 3 Find (fog): (b) $x^2 + 6x + 1$	(c) $4x^2 = 6x + 1$	(d) $x^2 = 6x + 1$
	(a) $4x + 0x + 1$	(0) x + 0x + 1	(c) 4x = 0x + 1	(u) x = 0x + 1
	Ans: $I(x) = x^2 + 3x + 3x^2 + 3x^$	g (2	$x) = 2x - 3 \qquad \text{fog}$	$g = I\{g(x)\} = I(2x - 3)$
	$=(2x-3)^2+3(2x-3)^2$	(x-3)+1 = 4	$4x^2 - 6x + 1$	_
2.	If R is the set of real num	bers such that function	on $f: R \to R$ is defined	by $f(x) = (x + 1)^2$, then
	find (tot):	$(h) w^2 + 1$	$(a) \{(m+1)^2 + 1\}^2$	May-2007
	(a) $(x + 1)^{-} + 1$ Ans: $f(x) - (x + 1)^{2}$	(b) $x^{-} + 1$ f of - f { f(x) }	(c) { $(x + 1)^{-} + 1$ } ⁻ - f(x + 1) ² - $\int (x + 1)^{-}$	(a) None $(1)^2 + 1)^2$
2	Let $f: R \to R$ be such that	$f(x) = 2^x$ then $f(x + f(x))$	+ y) equals :	Nov-2006
э.	(a) $f(x)+f(y)$	$(\mathbf{b})f(\mathbf{x})f(\mathbf{y})$	$(c)f(x) \div f(y)$	(d) None of these
	Ans:- $f(x) = 2^x$ $f(x + y)$	$f(x) = 2^{x+y}$ $f(x) \cdot f(y) = 0$	$= 2^{x} \cdot 2^{y} = 2^{x+y}$	(b) is correct
4.	If $f(x) = x^2 + x - 1$ and $4f(x) = x^2 + x - 1$	f(2x) = f(2x) then find 'x	•	Dec-2008
	(a) 4/3	(b) 3/2	(c) -3/4	(d) None of these
5.	Given the function $f(x) = ($	(2x + 3), then the value	e of $f(2x) - 2 f(x) + 3 w$	vill be : Dec-2009
	(a) 3	(b) 2	(c) 1	(d) 0
6.	If $f(\mathbf{x}) = 2\mathbf{x} + \mathbf{h}$ then find j	$f(\mathbf{x}+\mathbf{h}) - 2f(\mathbf{x})$		Dec-2009
	(a) h–2x	(b) 2x–h	(c) $2x + h$	(d) None of these
7.	If $F: A \to R$ is a real value	d function defined by	$f(x) = \frac{1}{x}$, then A =	June-2010
	(a) R	(b) $\mathbf{R} - \{1\}$	(c) $R - \{0\}$	(d) $\mathbf{R} - \mathbf{N}$
	Ans:- $f(x) = \frac{1}{x}$	x can take all r	real nos value except R	- {0}
8.	If $f: R \rightarrow R$, $f(x) = x+l$, $g: R$	\rightarrow R g(x) = x ² +1 then f	fog(-2) equals to	Dec-2010
	(a) 6	(b) 5	(c) –2	(d) None
	Ans: - $f(x) = x + 1$	$g(x) = x^2 + 1$	$2)^{2} + 1 - 5$	
	$f\{g(-2)\} = f(5) = 5$	5 + 1 = 6	(2) + 1 - 3	
9.	If $f(x-l) = x^2 - 4x + 8$, then f	f (x+1) =		Dec-2010
	(a) $x^2 + 8$	(b) $x^2 + 7$	(c) $x^2 + 4$	(d) $x^2 - 4x$
10.	If $f(x) = \frac{x}{\sqrt{1+x^2}}$ and $g(x)$	$=\frac{x}{\sqrt{1-x^2}}$ Find fog?		June-2011
	(a) x	(b) $\frac{1}{x}$	(c) $\frac{x}{\sqrt{1-x^2}}$	(d) $x\sqrt{1-x^2}$
11.	f(x) = 3 + x, for $-3 < x < 0$	0 and $3 - 2x$ for $0 < x$	< 3, then value of f(2)	will be Dec-2011
	a) – 1	b) 1	c) 3	d) 5
12.	If $f(x) = x + 2$, $g(x) = 7$	x^{x} , then g of (x) =		June-2013
	a) $7^x \cdot x + 2 \cdot 7^x$	b) $7^x + 2$	c) $49(7^x)$	d) None of these
	Ans:- $f(x) = x + 2$	$g(x) = 7^{x}$		+2 78 40
	$g \text{ OI } (X)$ If $f(x) = \log \left(\frac{1+x}{x}\right)$	$g\{I(X)\}$	$g(x + 2) = 7^{*}$	= /" × 49
13.	If $f(x) = \log\left(\frac{1}{1+x}\right)$, then	$\int \left(\frac{1+x^2}{1+x^2}\right)$ is equal to :		June-2013

Functions	12.2		GOPAL BHOOT
a) $f(x)$	b) 2f(x)	c) 3f(x)	d) – $f(x)$
14 If $f(x) = (a - x^n)^{1/n}$, a	> 0 and 'n' is a positiv	we integer, then $f(f(x))$) = Dec-2013
(a) x	(b) a	(c) $x^{1/n}$	(d) $a^{1/n}$
15. If $f(x) = \frac{x}{x}$, then $\frac{f(x/y)}{f(x/y)}$	=		Dec-2014
a) $\frac{x}{-1}$ I(y/x)	b) $\frac{y}{2}$	c) $-\frac{x}{2}$	d) $-\frac{y}{2}$
$\frac{16}{y} = \frac{16}{2} + \frac{2}{2}$	x^{-1} x x^{2} then the value	y	/ x Dec 2015
10. If $f(x) = 2x + 2$ and $g(x)$	x = x, then the value b) 22	c) 34	d) 128
17. If $f(x) = \frac{x-1}{x}$ and $g(x) = \frac{x-1}{x}$	$-\frac{1}{2}$ then $fog(x)$ is e	qual to :	U) 120
$\prod_{x} f(x) = \frac{1}{x}$ and $g(x) = \frac{1}{x}$	$-\frac{1-x}{1-x}$		d) v
$\frac{a}{x-1}$ 18 If $c(x) = \frac{x+1}{x+1}$ If $c[c(1)]$		C) I - X	u) - x
If $f(x) = \frac{1}{x+2}$ then I $\int \int \frac{1}{x} dx$	[]]=	:	Dec-2017
(a) $\frac{2x+3}{3x+5}$	(b) $\frac{2x+5}{3x+2}$	(c) $\frac{3x+2}{5x+3}$	(d) $\frac{5x+2}{2x+3}$
19. A is (1, 2, 3, 4) and B is (1, 4, 9, 16, 25) if a fund	ction f is defined from	set A to B where $f(x) =$
x^2 then the range of f is:			Nov-2018
(a) {1, 2, 3, 4}	$(b)\{1, 4, 9, 16\}$	(c) {1, 4, 9, 16, 25}	(d) None of these
20. The inverse function f^{-1}	of $f(y) = 3y$ is		Nov – 2020
(a) 1/3y	(b) y/3	(c) -3y	(d) 1/y
21. Let $F : R R$ be defined by	,		Jan - 2021
$f(x) = \int_{x^2}^{2x} f(x) dx > 3$) ~)		
$\int (x) = \begin{cases} x & \text{for } 1 < x \\ 3x & \text{for } x < 1 \end{cases}$	≤ J [
The value of $f(-1) + f(2)$	+ f(4) is		
(a) 9	(b) 14	(c) 5	(d) 6
22. The range of the function	F defined by $f(x) = \sqrt{2}$	$16 - x^2$ is	July – 2021
(a) [-4, 0]	(b) [-4, 4]	(c) [0, 4]	(d) [+4, 4]
23. Let $A = R - \{3\}$ and $B = R$	$\{-\{1\}, \text{ let } f(x) \rightarrow B$		July – 2021
Defined by $f(x) = \frac{x-2}{x-2}$ what	at is the value of $f^{-1}\left(\frac{1}{2}\right)$?	
(a) $2/3$	(b) $3/4$	(c) 1	(d) -1
			(u) 1
24. If $F(X) = x^2 - 1$ and $g(X)$	= 2x + 3 , then Fog ((3) - g of (-3) =	July - 2021
(a) / 1	(0) 01	(C) 41	(d) 51
23. If $u(x) = \frac{1}{1-x}$, then $u^{-1}(x)$	18:	1	Dec-2021
(a) $\frac{1}{x-1}$	(b) 1 – x	(c) $1 - \frac{1}{x}$	$(d)\frac{1}{x}-1$
26. If $f(y) = \frac{y-1}{y}$, find $f^{-1}(x)$.	June 2022		
(a) $\frac{1}{1}$	(b) y	(c) $\frac{y}{1}$	(d) $\frac{y}{x}$
27. If $f(x)$: N \rightarrow R is a function	n defined as $f(x) = 4x +$	y-1 -3. $\forall x \in N$, then $f^{-1}(x)$	is June 2023
(a) $4 + \frac{x+3}{x+3}$ (b)	$\frac{x+3}{x+3}$	(c) $\frac{x-3}{x-3}$	(d) $\frac{3x+3}{3x+3}$
$\frac{4}{4}$	4	4	4
(c) Given $f(x) = 4x + 3$	3		
Let $f(x) = y \Rightarrow x$	$= f^{+}(y)$		
y = 4x + 3			
$4\mathbf{x} = \mathbf{y} - 3$			
$X = \frac{1}{4}$			

Functions

$$f^{-1}(y) = \frac{y-3}{4}$$

Then $f^{-1}(x) = \left(\frac{x-3}{4}\right)$

	Answer Key																		
1.	с	2.	с	3.	b	4.	b	5.	d	6.	a	7.	с	8.	a	9.	c	10.	a
11.	a	12.	с	13.	b	14.	a	15.	с	16.	с	17.	b	18.	a	19.	b	20.	b
21.	a	22.	b	23.	с	24.	b	25.	с	26.	a								

CHAPTER INTEGRAL CALCULUS

(i)

PAST EXAMINATION QUESTIONS MEMORY BASED QUESTIONS FROM SCANNER NOT FROM ICAI PUBLICATION(BETTER SKIP)

The slope of the tangent at the point (2, - 2) to the curve $x^2 + xy + y^2 - 4 = 0$ is ;given by: Nov-2006 1. Ans:(b) (a) 0 (b) 1 (c) -1(d) None $x^2 + xy + y^2 - 4 = 0 \quad (1)$ Ans: So, (Slope of the tangent at any point to the curve is equal to $\frac{dy}{dx}$ at that point) ... Differentiating (1) both side we get $2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} - 0 = 0 \text{ Or } \frac{dy}{dx} (x + 2y) = -2x - y$ $\frac{dy}{dx} = \frac{-2x - y}{x + 2y} \text{ Or } \left[\frac{dy}{dx}\right](2, -2) = \frac{-2(2) - (-2)}{2 + 2(-2)} = \frac{-4 + 2}{2 - 4} = \frac{-2}{-2} = 1$ Or Or The derivative of $x^2 \log x$ is 2. **Nov-2006 Ans:(c)** $(a)1 + 2 \log x$ (b) 2 log x (c) $x (1 + 2 \log x)$ (d) None of these Let $y = x^2 \log x$ Differentiating both sides we get Ans: So, $\frac{dy}{dx} = x^2 \frac{d}{dx} (\log x) + \log x \frac{d}{dx} (x^2) = x^2 \times \frac{1}{x} + \log x \times 2x^{2-1}$ $= x + x \log x = x(1 + \log x)$ $\int (e^x + e^{-x}) dx$ is: Nov-2006 Ans:a 3. (b) $e^{-1} - e$ (c) $e + e^{-1}$ $\int e^x dx + \int e^{-x} dx = e^x - e^{-x}$ (a) $e - e^{-1}$ (d) None Ans: So, $\int e^x dx + \int e^{-x} dx = e^x - e^{-x}$ $\therefore \qquad \int_0^1 (e^x + e^x) dx = [e^x - e^{-x}]_0^1$ $= e^1 - e^{-1} - e^0 + e^{-0} = e^1 - e^{-1} - 1 + 1 = e^1 - e^{-1}$ $\int \frac{8x^2}{(x^3+2)^3} \, dx \text{ is equal to:}$ 4. Nov-2006 Ans:(b) (a) $-\frac{4}{3}(x^3+2)^2 + C$ (b) $-\frac{4}{3}(x^3+2)^{-2} + C$ (c) $\frac{4}{3}(x^3+2)^2 + C$ (d) None of these $\int \frac{8x^2}{(x^3+2)^3} dx$ Ans: So. Let $x^3 + 2 = z$ Now, differentiating both side the above eq. we get $3x^2dx = dz$ $dx = \frac{dz}{3x^2}$ $= \int \frac{8x^2}{z^3} \times \frac{dz}{3x^2} [\because x^3 + 2 = z]$ $=\frac{8}{2}\int z^{-3}dz$ $=\frac{8}{3} \times \frac{z^{-3+1}}{-3+1}$ $=\frac{\frac{3}{8}}{\frac{z^{-2}}{(-2)}} [:: \int x^n = \frac{x^{-n+1}}{-n+1}]$ $=-\frac{4}{3}(x^3+2)^{-2}+c$

5. If $x = y \log (xy)$, then dx is equal to:

Feb-2007Ans:(b)

13.1

GOPAL BHOOT

$$\begin{array}{rcl} \frac{x+y}{(a)} & \frac{x+y}{(1+\log xy)} & (b) & \frac{x-y}{x(1+\log xy)} & (c) & \overline{x(\log x+\log y)} & (d) & \frac{x-y}{x(\log x+\log y)} \\ \text{Ans: So,} & x=y\log(xy) \\ \text{Differentiating both sides we get 0r, 1=\log(xy) $\times \frac{dy}{dx} + y + \frac{d}{dx}[\log(xy)] \\ \text{Or,} & 1=\log(xy) \frac{dy}{dx} + y \times \frac{1}{xy} \left[y + x\frac{dy}{dx} \right] & \text{Or,} 1=\log(xy) \frac{dy}{dx} + \frac{y}{dx} + \frac{dy}{dx} \\ \text{Or,} & 1-\frac{y}{x} = [\log(xy) + 1] \frac{dx}{dx} & \text{Or,} \frac{x+y}{(1+\log(xy))} = \frac{dx}{dx} \\ \text{Or,} & 1-\frac{y}{x} = [\log(xy) + 1] \frac{dx}{dx} & \text{Or,} \frac{x+y}{(1+\log(xy))} = \frac{dx}{dx} \\ \text{Or,} & 1-\frac{y}{x} = [\log(xy) + 1] \frac{dx}{dx^2} + x \frac{dy}{dx} - y \\ \text{Or,} & 1-\frac{y}{x} = [\log(xy) + 1] \frac{dx}{dx^2} + x \frac{dy}{dx} - y \\ \text{Or,} & 1-\frac{y}{x} = [\log(xy) + 1] \frac{dx}{dx^2} + x \frac{dy}{dx} - y \\ \text{Or,} & 1-\frac{y}{x} = (\log(xy) + 1) \frac{dx}{dx^2} + x \frac{dy}{dx} - y \\ \text{Or,} & 1-\frac{y}{x} + \frac{dy}{dx} + x, \text{ then} \\ \begin{array}{l} \frac{y}{(1+y)} & \frac{y}{(1+y)} + \frac{y}{(1+y)} \\ \frac{y}{(1+y)} & \frac{y}{(1+y)} \\ \frac{y}{(1+y)} & \frac{y}{(1+y)} \\ \frac{y}{(1+y)} & \frac{y}{(1+y)} \\ \frac{y}{(1+y)} & \frac{x}{(1+y)} & \frac{y}{(1+y)} \\ \frac{y}{(1+y)} \\ \frac{y}{(1+y)} & \frac{y}{(1+y)} \\ \frac{y}{(1+y)} \\ \frac{y}{(1+y)} & \frac{y}{(1+y)} \\ \frac{y}{(1+y)} & \frac{y}{(1+y)} \\ \frac{y}{(1+y)} & \frac{y}{(1+y)} \\ \frac{y}{(1+y)} & \frac{y}{(1+y)} \\ \frac{y}{(1+y)} \\ \frac{y}{(1+y)} & \frac{y}{(1+y)} \\ \frac{y}{($$$

Integral Calculus

13.3

11. The integral of
$$(e^{3x} + e^{3x}) / e^{x}$$
 is:
(a) $\frac{e^{2x}}{2} + \frac{e^{4x}}{4} + C$ (b) $\frac{e^{2x}}{2} - \frac{e^{4x}}{4} + C$ (c) $e^{3x} - e^{4x} + C$ (d) None of these
Ans: $\int \frac{e^{3x}}{e^{x}} + \frac{e^{-3x}}{e^{x}} dx = \int \frac{e^{3x}}{e^{x}} dx + \int \frac{1}{e^{3x} + e^{x}} dx = \int e^{4x} dx = \int \frac{e^{4x}}{2} dx = \int \frac{e^{4x}}{2} + C$ (d) None of these
Ans: $\int x^{2} e^{3x} dx$ is:
(a) $x2e^{3x} - 2xe^{3x} + 2e^{3x} + C$ (b) $\frac{3}{3} - \frac{xe^{3x}}{9} + 2e^{3x} + C$
(c) $\frac{x^{3}e^{3x}}{3} - \frac{2}{9} + \frac{2}{27}e^{2x} + C$ (d) None of these
Ans: $\int x^{2} e^{2x} dx$
Applying by parts we get
 $= x^{2} \int e^{3x} dx - \int [2x \int e^{3x} dx] dx$ [Taking x^{2} as first function] $= x^{2} \frac{e^{3x}}{3} - \int 2x \frac{e^{3x}}{3} dx$
 $= x^{2} \int e^{3x} dx - \int [2x \int e^{3x} dx] dx$ [Taking x^{2} as first function] $= x^{2} \frac{e^{3x}}{3} - \int 2x \frac{e^{3x}}{3} dx$
 $= x^{2} \frac{e^{3x}}{3} - \frac{2}{3} \int x^{a3x} dx$
Again applying by parts we get
 $= x^{2} \frac{e^{3x}}{3} - \frac{2}{3} (x^{a3x} + \frac{2}{9}) \frac{e^{4x}}{3} dx = x^{2} \cdot \frac{e^{3x}}{3} - \frac{2}{2} \cdot \frac{e^{3x}}{3} + c$
 $= \frac{e^{3x}e^{3x}}{2} - \frac{2}{3} (x^{a3x} + \frac{2}{2}) \frac{e^{3x}}{3} dx = x^{2} \cdot \frac{e^{3x}}{3} - \frac{2}{2} \cdot \frac{e^{3x}}{3} + c$
 $= \frac{e^{3x}e^{3x}}{2} - \frac{2}{3} (x^{a3x} + \frac{2}{2}) \frac{e^{3x}}{3} dx = x^{2} \cdot \frac{e^{3x}}{3} - \frac{2}{2} \cdot \frac{e^{3x}}{3} + c$
 $= \frac{e^{3x}e^{3x}}{2} - \frac{2}{2} (b) \log 5 - \log 2 + 1 (c) \log \frac{2}{5}$ (d) None of these
Ans:
 $\int \frac{1}{2} \frac{2x}{1 + x^{2}} dx$ is:
May-2007Ans:(a)
14. If x^{2} = y^{3}, then gives:
 $x^{3} - 2x^{3}$
 $x^{3} - 2x^{3}$ (b) $\frac{5}{3} (x) = \frac{x}{2} + \log x^{4} + \frac{x}{3} +$

Integral Calculus

13.4

[Given Loge = 1]
(a) 1/2 (b) 3/2 (c) 1 (d) 5/2
Ans:
$$\int_{1}^{x} \frac{(1+Log x)}{x^{2}} dx$$

Let 1+ log x = z [differentiating we get] $\frac{1}{x} dx = dz$
when x = c , z = 2 when x = 1 , z = 1 = $\int_{1}^{x} z dz = \left[\frac{x^{2}}{2}\right]_{1}^{2} = \frac{1}{2}[4-1] = \frac{3}{2}$
17. Find $\int \frac{x^{2}}{(x^{2}+1)^{2}} dx$
Let $x^{2} + 1 = x$ $[x^{2} = x - 1]$
 $2x dx = dz$ $x dx = \frac{1}{2} dz$
 $= \int \frac{x^{2}x^{2} + 1}{(x^{2}+1)^{2}} dx$
Let $x^{2} + 1 = x$ $[x^{2} = x - 1]$
 $2x dx = dz$ $x dx = \frac{1}{2} dz$
 $= \int \frac{x^{2}x^{2} + 1}{4z^{2}} = \frac{1}{2}\int \frac{1}{x^{2}} dz - \frac{1}{2}\int \frac{1}{x^{2}} dz = \frac{-1}{2z} + \frac{1}{2x2^{2}} = \frac{1}{4}\frac{1}{2(x^{2}+1)^{2}} dz$
 $= \frac{1}{4z^{2}} - \frac{1}{4z}$
 $= \frac{1}{4z^{2}} + \frac{1}{2x^{2}+1} = \frac{1}{4(x^{2}+1)^{2}} = \frac{1}{4(x^{2}+1)^{2}} = \frac{1}{4(x^{2}+1)^{2}} = \frac{1}{4(x^{2}+1)^{2}} = \frac{1}{4} + \frac{1}{2(x^{2}+1)^{2}} dz$
 $= \frac{1}{4} + \frac{1}{2(x^{2}+1)^{2}} dx$
Is. If $y = (x + \sqrt{x^{2} + m^{2}})^{n}$ then $\frac{dy}{dx}$: Nov-2007Ans:a
(a) $\frac{ny}{\sqrt{x^{2} + m^{2}}}$ (b) ny (c) $-\frac{ny}{\sqrt{x^{2} + m^{2}}}$ (d) None
Ans: $y = (x + \sqrt{x^{2} + m^{2}})^{n-1} (1 + \frac{2x}{2\sqrt{x^{2} + m^{2}}}) = \frac{n(x + \sqrt{x^{2} + m^{2}})^{n}}{(x + \sqrt{x^{2} + m^{2}})^{n}} = \frac{ny}{\sqrt{x^{2} + m^{2}}}$
(b) $\frac{y(2y - x)}{(x + \sqrt{x^{2} + m^{2}})^{n-1}} (1 + \frac{2x}{2\sqrt{x^{2} + m^{2}}}) = \frac{n(x + \sqrt{x^{2} + m^{2}})^{n}}{(x + \sqrt{x^{2} + m^{2}})^{n-1}} (1 + \frac{2x}{2\sqrt{x^{2} + m^{2}}}) = \frac{n(x + \sqrt{x^{2} + m^{2}})}{(x + \sqrt{x^{2} + m^{2}})} = \frac{ny}{\sqrt{x^{2} + m^{2}}}$
19. If $x_{y}(x - y) = 0$, find : Nov-2007Ans:a
(a) $\frac{y(2y - x)}{(x(2y - x))}$ (b) $\frac{x(2x - y)}{x(2y - x)}$ (c) $\frac{y(2y - x)}{(x(2x - y))}$ (d) None
Ans: $x_{y}(x - y) = 0$, $x_{y} - x_{y}^{2} = 0$ differentiating both sides we get
or, $2xy + x^{2}\frac{dy}{dx} - y^{2} - 2xy\frac{dy}{dx} = 0$ or, $\frac{dy}{dx}[x^{2} - 2xy] = y^{2} - 2xy$
or, $\frac{dy}{dx} = \frac{y^{2} - 2xy}{x^{2} - x^{2} - y\log x}$ (c) $\frac{y^{2}}{x(2 - y)}$ (d) None
Ans: $y = \sqrt{x}\sqrt{x^{4-m}}$ then $\frac{dy}{dy}$ is: Nov-2007Ans:(c)
(a) $\frac{y^{2}}{\log x}$ (b) $\frac{y^{2}}{dx} = \frac{y}{2} + \log\sqrt{x}\frac{dx}{dx}$ or, $\frac{dy}{dx} = \frac{y^{2}}{\sqrt{x}}$
Or, $\frac{dy}{dx} = \frac{y}{\sqrt{x$

	(a) $\log (x - a) - \log (x + a)$	a) + C	(b) $\log x - \frac{a}{x+a} + C$	
	(c) $\frac{1}{2a} \log \left(\frac{x-a}{x+a} \right) + C$		(d) None of these	
	Ans: (c) $\frac{1}{2a} \log\left(\frac{x-a}{x+a}\right) +$	<i>c</i> [by formula]		
22.	The value of $\int_{0}^{1} \frac{dx}{(1+x)(2+x)} dx$	$\frac{1}{x}$ is:		Nov-2007Ans:(b)
	(a) $\log \frac{3}{4}$	(b) $\log \frac{4}{3}$	(c) log 12	(d) None
	Ans: $\int_0^1 \frac{dx}{x^2 + 3x + 2}$ Or, $x^2 + 3x + 3$	$2 = \left(x^2 + 2 \times \frac{3}{2}x + \frac{9}{4}\right)$	$+ 2 - \frac{9}{4} = (x + \frac{3}{2})^2 -$	$(\frac{1}{2})^2$
	$= \int_0^1 \frac{dx}{(x+\frac{3}{2})^2 - (\frac{1}{2})^2}$		$= \left[\frac{1}{2\times\frac{1}{2}}\log\left(\frac{x+\frac{3}{2}-\frac{1}{2}}{x+\frac{3}{2}+\frac{1}{2}}\right)\right]_{0}^{1}$	
	$= \log\left(\frac{1+\frac{3}{2}-\frac{1}{2}}{1+\frac{3}{2}+\frac{3}{2}}\right) -$	$-\log\left(\frac{0+\frac{3}{2}-\frac{1}{2}}{0+\frac{3}{2}+\frac{1}{2}}\right)$	$= log\left(\frac{2}{3}\right) - log\left(\frac{1}{2}\right)$	$= log \frac{4}{3}$
23.	If $y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac$	$\frac{x^n}{n!} + \frac{x^n}{n!}$	• then $\frac{dy}{dx} - y$ is equal to	: Nov-2007Ans:(c)
	(a) 1	(b) -1	(c) 0	(d) None
	Ans: $y = e^x$	$[:: 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	$\cdots \frac{x^n}{n!} + \cdots \cdots \infty = e^x]$	$\frac{dy}{dx} = e^x$
	A T P	$\frac{dy}{dx} - y = e^x - e^x = 0$	_	
24.	The slope of the tangent	t to the curve $y = \sqrt{4 - x^2}$	at the point, where the o	ordinate and the abscissa
	are equal, 1s: (a) -1	(b) 1	(c) 0	Nov-200/Ans:a (d) None
	Ans: $y = \sqrt{4 - x^2}$		dy = -2r	
	Differentiating be	oth side we get	$\frac{dy}{dx} = \frac{2x}{2\sqrt{4-x^2}}$	
	When $x = \sqrt{2}$,	$y = \sqrt{2} \qquad \qquad \therefore \left(\frac{dy}{dx}\right)^{(1)}$	$=\frac{-2\sqrt{2}}{2\sqrt{4-2}}=-1$	
	$\mathbf{y} = \mathbf{x}$	$\therefore y = \sqrt{4 - x^2}$	$y = \sqrt{4 - y^2}$	$\therefore x = \sqrt{2}, -\sqrt{2}$
	$2y^2 = 4^2$	$y^{2} = 2$	$y = \pm \sqrt{2}$	
25.	The value of $\int_{2}^{3} f(5-x)dx$	$dx - \int_{2}^{3} f(x) dx$ is :		Nov-2007Ans:(b)
	(a) 1	(b) 0	(c) -1	(d) None
	Ans.:: 0 by for	mula $\int_{b}^{a} f(x) dx$	$= \int_{b}^{a} f(a+b-x)$	(x)dx
26.	$\int \frac{e^{\log e^x}}{dx} dx$ is;			Nov-2007Ans:(b)
	(a) $x^{-1} + C$	(b) x + C	(c) $x^2 + C$	(d) None
	Ans: $\int \frac{c^{\log e^x}}{x} dx$			
	Let $loge^x = z$	Or, $\frac{\log x}{\log e} = z$	Or, $\log x = z$	[differentiating we get]
	Or, $\frac{1}{x} dx = z$	$\int e^x dz$	$= e^{x} + c$	$=e^{logx}+c$ $=x+c$
27.	Differentiate $e^{(x^x)}$:			June-2008Ans:(c)
	(a) $(1 + \log x)$	(b) $x^{x}(1 + \log x)$	(c) $e^{x^x} (1 + \log x) x^x$	(d) $e^{x^x}(1 + \log x)$

Integral Calculus

13.6

 $y = e^{x^x}$ Ans: Talking log on both sides we get $\log y = x^x \log e$ Or, $\log y = x^x$ Again taking log we get Or, $\log(\log y) = x \log x$ [Differenting both side we get] Or, $\frac{1}{\log x} \frac{1}{y} \frac{dy}{dx} = \frac{x}{x} + \log x$ Or, $\frac{dy}{dx} = y \log y (1 + \log x)$ Or, $\frac{dy}{dx} = e^{xx} (1 + \log x)x^x$ If $x^m y^n = (x + y)^{m+n}$, then find $\frac{dy}{dx}$ 28. June-2008Ans:(b) (b) y/x $x^m y^n = (x + y)^{m+n}$ (a) x/y(d) None (c) xyAns: Talking log on both sides we get $\log(x^m y^n) = (m+n)\log(x+y)$ Or. $m \log x + n \log y = m \log(x + y) + n \log(x + y)$ Or. $\frac{m}{x} + \frac{n}{y}\frac{dy}{dx} = \frac{m}{(x+y)}\left(1 + \frac{dy}{dx}\right) + \frac{n}{(x+y)}\left(1 + \frac{dy}{dx}\right)$ Or, $\frac{x}{x} + \frac{y}{y} \frac{dx}{dx} = \frac{(x+y)}{x+y} + \frac{m}{(x+y)} \frac{dy}{dx} + \frac{n}{x+y} + \frac{n}{x+y} \frac{dy}{dx}$ $\left[\frac{n}{y} - \frac{m}{(x+y)} - \frac{n}{(x+y)}\right] \frac{dy}{dx} = \frac{m}{x+y} + \frac{n}{x+y} - \frac{m}{x}$ $\left[\frac{mx+ny-my-ny}{y(x+y)}\right] \frac{dx}{dy} = \frac{mx+nx-mx-my}{x(x+y)} \text{ Or, } \frac{dy}{dx} = \frac{(nx-my)y(x+y)}{x(x+y)(nx-my)} = \frac{y}{x}$ Or, Or, Or. Evaluate $\int \frac{1}{(x-1)(x-2)} dx$: 29. June-2008 Ans:a (a) $\log\left(\frac{x-2}{x-1}\right) + C$ (b) $\log[(x-2)(x-1)] + C$ (c) $\log\left(\frac{x-1}{x-2}\right) + C$ (d) None **Ans:** $\int \frac{1}{(x-1)(x-2)} dx$ $=\int \frac{1}{x^2 - 3x + 2} dx$ $x^{2} - 3x + 2 = \left(x^{2} - 2 \times \frac{3}{2}x + \frac{9}{4}\right) + 2 - \frac{9}{4} = \left(x - \frac{3}{2}\right)^{2} - \frac{1}{4} = \left(x - \frac{3}{2}\right)^{2} - \left(\frac{1}{2}\right)^{2}$ $=\int \frac{dx}{(x-\frac{3}{2})^2 - (\frac{1}{2})^2} = \frac{1}{2 \times \frac{1}{2}} \log \frac{x - \frac{3}{2} - \frac{1}{2}}{x - \frac{3}{2} + \frac{1}{2}} = \log \frac{(x-2)}{(x-1)} + c$ $\int (2x+5)dx$ and the value is: 30. June-2008 Ans:(c) (a) 10 (d) None (b) 3 Ans: $\int_{1}^{4} 2x \, dx + \int_{1}^{4} 5 \, dx = 2 \int_{1}^{4} x \, dx + 5 \int_{1}^{4} dx = \left[\frac{2x^{2}}{2} + 5x\right]_{1}^{4}$ = 16 + 5(4) - 1 - 5 = 36 - 6 =If $f(x) = a^x x^n$ then find f'(x)31. **Dec-2008** Ans:(c) (a) $f(x) [a + \log a]$ (b) $f(x) \left| \frac{a}{r} - \log a \right|$ (c) $f(x) \left| \frac{a}{r} - \log a \right|$ (d) $f(x)[a + x \log a]$ **Ans:** So, $f(x) = a^{x}x^{n}$ $f^{1}(x) = na^{x}x^{n-1} + x^{n}a^{x}\log a = a^{x}x^{n}\left[\frac{n}{x} + \log a\right]$ $\int \frac{1}{x(x^5+1)} dx$ 32. **Dec-2008 Ans:(b)** (a) $\log\left(\frac{x^5}{x^5-1}\right) + C$ (b) $\frac{1}{5}\log\left(\frac{x^5}{x^5+1}\right) + C$ (c) $\frac{1}{3}\log\left(\frac{x^5}{x^5+1}\right) + C$ (d) $\frac{1}{3}\log\left(\frac{x^5+1}{x^5}\right) + C$ **Ans:** $\int \frac{x^4}{x^{5(x^5+1)}} dx$ Let $x^5 + 1 = z$ $5x^4dx = dz$

13.7

GOPAL BHOOT

$$x^{4} dx = \frac{dx}{2} = -\frac{1}{2} \int \frac{dx}{(x-1)} = -\frac{1}{2} \int \frac{dx}{x^{2} + 2x^{2} + x^{2} + x^{4}} = -\frac{1}{2} \int \frac{dx}{(x-y^{2})^{2} (y^{2})^{2}} = -\frac{1}{2} \int \frac{dx}{(x-y^{2})^{2} (x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2} (x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2} (x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2} (x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2} (x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2} (x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2} (x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2} (x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2}} = \int \frac{dx}{(x-y^{2})^{2} (x-y^{2})^{2}} = \int \frac{dx}{(x-$$
	$=1-2\int_{0}^{1}dx+2\int_{0}^{1}dx$	$\frac{dx}{1+x} = 1 - 2[x]_0^1$	$+2[\log(1+x)]_{0}^{1}$	
	=1-2(1-0)+2	$(\log 2 - \log 1) = 1 -$	$-2 + 2\log 2 = 21$	$\log 2-1$ Ans. a
39.	$x = 2 t + 5$ and $y = t^2 - 5$, then $\frac{dy}{dt} = ?$		Dec-2009 Ans:a
	(a) t	dx (b) $-1/t$	(c) 1/t	(d) 0
	Ans: $x = 2t + 5$	$y = t^2 - 5$	$\frac{dx}{dt} = 2\frac{dy}{dt} = 2t \frac{dy}{dx} =$	$\frac{dy/dt}{dx/dt} = \frac{2t}{2} = t$
40.	$x = at^2 y = 2 at, \frac{dy}{dx} = ?$			Dec-2009 Ans:a
	(a) 1/t	(b) –1/t	(c) t	(d) None of above
	Ans: $x = at^2$	$y = 2at$ $\frac{dx}{dt} = 2at$	$\frac{dy}{dt} = 2a \frac{dy}{dx} = \frac{dy/dt}{dx/dt} =$	$=\frac{2a}{2at}$ 1/t
41.	Find the second derivation	ve of $y = \sqrt{x+1}$		Dec-2009 Ans:(b)
	(a) $1/2 (x + 1)^{-1/2}$	(b) $-1/4(x+1)^{-3/2}$	(c) $1/4 (x + 1)^{-1/2}$	(d) None of these
42.	$\int \frac{dx}{\sqrt{3x+4} - \sqrt{3x+1}} \mathrm{Eq}$	ual to		June-2010 Ans:(b)
	(a) $\frac{2}{27} \left[(3x+4)^{\frac{3}{2}} - (3x+4)^{\frac{3}{2}} \right]$	$(-1)^{3/2} + c$	(b) $\frac{2}{27} \left[(3x+4)^{\frac{3}{2}} + (3x+4)^{\frac{3}{2}} \right]$	$(x+1)^{3/2} + c$
	(c) $\frac{2}{3} \left[(3x+4)^{3/2} - (3x+1)^{3/2} \right]$	$\sqrt[3]{2} + c$	(d) None of these	
	Ans: $\int \frac{dx}{\sqrt{3x+4} - \sqrt{3x+1}}$	$= \int \frac{(\sqrt{3x+4} + \sqrt{3x+4})}{(\sqrt{3x+4} + \sqrt{3x+1})} \sqrt{3x}$	$\frac{1}{1} dx$ $\frac{1}{1} dx$	
	$=\int \frac{(\sqrt{3x+4}+\sqrt{3x+3})}{2\pi + 4}$	$\frac{1}{1}\frac{dx}{dx} = \frac{1}{2}\int \sqrt{3x+4} dx + \frac{1}{2}$	$\frac{1}{2}\int \sqrt{3x+1}dx$	
	$=\frac{1}{2}\int (3x+4)^{1/2}$	$\int dx + \frac{1}{2} \int (3x+4)^{1/2}$	$dx = \frac{1}{2} \frac{(3x+4)^{3/2}}{2/2} + \frac{(3x+4)^{3/2}}{2/2}$	$\frac{(4)^{3/2}}{2} + c$
	$=\frac{2}{27}[(3x+4)^{3/2}]$	$x^{2} + (3x+1)^{3/2}] + c$	5 5/2 5/	2
	Ans: $Y = \sqrt{x+1}$	Differentiating both side	es we get $\frac{dy}{dx} = \frac{1}{2\sqrt{x+1}}$	
	Again differentiating we	$get \frac{d^2 y}{dx^2} = \frac{1}{2} \frac{\frac{1}{2}\sqrt{x+1}}{x+1}$	$= -\frac{1}{4(x+1)^{3/2}} = -\frac{1}{4}(x)$	+1) ^{-3/2}
43.	$\int^2 \frac{x dx}{2} =$			June-2010 Ans:a
	$J_1 x^2 + 2$		1	1
	(a) $\log \sqrt{2}$	(b) $\log \sqrt{3}$	(c) $\log \frac{1}{\sqrt{2}}$	(d) $\log \frac{1}{\sqrt{3}}$
	Ans: $\int_{1}^{2} \frac{x dx}{x^2 + 2}$ Let $x^2 + \frac{1}{2}$	-2 = z when $x = 2$, $z = 6$	2xdx = dz when $x =$	= 1 , z = 3
	Xdx = dz/2	$=\frac{1}{2}\int_{3}^{6}\frac{dz}{z}=\frac{1}{2}[\log z]_{3}^{6}$	$= 1/2 [\log 6 - \log 3] =$	$1/2 \log 2 = \log \sqrt{2}$
44.	If $x^2 + y^2 = 4$ then	Ŭ		June-2010 Ans:(b)
	(a) $y \frac{d^2 y}{dx^2} - \left(2 \frac{dy}{dx}\right)^2 + 1$	= 0	(b) $y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1$	=0
	(c) $y \frac{d^2 y}{dx^2} - \left(\frac{dy}{dx}\right)^2 - 1 =$	0 (d) $y \frac{d^2 y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 + 1$	= 0	
	Ans: $x^2 + y^2 = 4$	differentiating both side	es we get $2x + 2y \frac{dy}{dx} = 0$)
	or, $2y \frac{dy}{dx} = -2x$	or, $y \frac{dy}{dx} = -x$	again differentiating v	ve get
	or, $y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)$	² = -1	or, $y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1$	1 = 0
45.	The cost function for the 15	production of x units of	a commodity is given by	$y C(x) = 2x^3 - 15x^2 + 36x + $

13.8

The cost will be minimum when "x" is equal to

Dec-2010 Ans:a

Integral Calculus 13.10 $y^{1}(x) = \frac{1}{6}(3x^{2} - 6x + 2)$ $y^{1}(1) = \frac{1}{6}[3(1)^{2} - 6(1) + 2]$ Given, $y = \int (e^{a \log x} + e^{x \log a}) dx$; then $\frac{dy}{dx}$ **June-2011 Ans. (b)** 51. (a) $X^{a} a^{x}$ (b) $x^{a} + a^{x}$ (c) $ax^{x-1} + a^x \log a$ (d) None of the above (c) $ax^{x-1} + a^x \log a$ (= $\int (c^{\log x^a} + c^{\log a^x}) dx$ **Ans:** $y = \int (c^{alogx} + c^{xloga}) dx$ $=\int x^{a} + a^{x} dx$ Differentiating both side we get $\frac{dy}{dx} = \frac{d}{dx} \int (x^a + a^x) dx$ $=ax^{a-1}+a^x\log a+C$ $\frac{dy}{dx} = \frac{d}{dx} \int (x^a + a^x) dx$ If $f'(x) = 3x^2 - \frac{2}{x^3}$; f(1) = 0 and f(x) =_____ 52. **June-2011 Ans. (c)** (a) $\frac{x^3}{2} - x^2 - 2$ (b) $x^3 + x^2 + 2$ (c) $x^3 + x^{-2} - 2$ (d) None of these **Ans:** $f'(x) = 3x^2 - \frac{2}{x^3}$ Integrating both side we get $f(x) = 3\int x^2 dx - 2\int \frac{dx}{x^3} = 3\frac{x^3}{3} + \frac{1}{x^2} + c = x^3 + \frac{1}{x^2} + c f(1) = 1 + \frac{1}{1} + c$

$$0 = 2 + c \qquad c = -2 \quad f(x) = x^{3} + x^{-2} - 2$$
53.
$$\int_{-1}^{1} \frac{|x|}{x} dx = \underline{\qquad} \qquad Dec-2011 \text{ Ans. (b)}$$
a) -1 b) 0 c) 1 d) 2
Ans.
$$\int_{-1}^{1} \frac{|x|}{x} dx = \int_{-1}^{0} \frac{-x}{x} dx + \int_{0}^{1} \frac{x}{x} dx = -\int_{-1}^{0} dx + \int_{0}^{1} dx = 1 + 1 = 2$$
54.
$$\frac{d}{x} \left(2^{\log_{2}^{x}} \right) = \underline{\qquad} \qquad Dec-2011 \text{ Ans. a}$$

$$dx ()$$
a) 1 b) 0 c) 1/2 d) $2^{x} \cdot \log^{2} x$
Ans. $\frac{d}{dx} 2^{\log_{2}^{x}}$
Formula

 $a^{\log_{a}^{x}} = x$ So, $2^{\log_{2}^{x}} = x \frac{d}{dx}(x) = 1$ 55. $\int \frac{e^x}{(1+x)^3} dx - \int \frac{e^x}{2(1+x)^2} dx =$ _____

Ans.
$$\int \frac{e^x}{(1+x)^3} dx - \int \frac{e^x}{2(1+x)^2} dx \implies \int e^4(f(x) + f'(x)) = e^x f(x)$$
 (So Ans.

b) $\frac{e^x}{2(1+x)^2} + C$ c) $-\frac{e^x}{2(1+x)^2} + C$ d) $\frac{e^x}{2(1+x)^2} + C$

56. If
$$Y = x^x$$
 then $\frac{d^2 y}{dx^2} =$ Dec-2011 Ans. a
a) $\frac{dY}{dx}(1+\log x) + Y \frac{d}{dx}(1+\log x)$
b) $\frac{dY}{dx}(1+\log x) + \frac{d}{dx}(1+\log x)$
c) $\frac{dY}{dx}(1+\log x) - Y \frac{d}{dx}(1+\log x)$
d) $\frac{dY}{dx}(1+\log x) - \frac{d}{dx}(1+\log x)$

Dec-2011 Ans. (c)

c)

= -1/6

13.11

Integral	Calculus

13.12

GOPAL BHOOT

(a)
$$y = 2x - 3$$
 (b) $y = 10x$ (c) $10x - 13$ (d) $y = 10$
Ans. $f = x^2 - 3x + 2$ $f'(x) = 2x - 3$ $f'(x)]_{x, z} = 4 - 3 = 1$
 $\frac{y - z}{x - 2} = f'(x) = 1$ $y - 7 = x - 2$ $y = x + 5$
Formula
 $\frac{y - y_1}{x - x_1} = f'(x)$
64. If $y = \log \left[\frac{5 - 4x^2}{3 + 5x^2}\right]$, then $\frac{dy}{dx} = \frac{1}{(b)}$ (b) $(4x^2 - 5)$ (3 + 5x²) (c) $\frac{6x}{4x^2 - 5} - \frac{10x}{3 + 5x^2}$ (d) 8x 10
Ans. $y = \log \left[\frac{5 - 4x^2}{3 + 5x^2}\right]$
 $\Rightarrow \log \left[(5 - x^2) - \log \left[(3 + 5x^2)\right] \frac{dy}{dx} = \frac{-8x}{5 - 4x^2} - \frac{10x}{3 + 5x^2} = \frac{4x}{3 + 5x^2} - \frac{10x}{3 + 5x^2}$ (Ans.)
65. If $y = \log_{y} x$, then $\frac{dy}{dx}$ is equal to: June-2013 Ans. (b)
a) $\frac{1}{x + \log y}$ b) $\frac{1}{x + x \log y}$ c) $\frac{1}{1 + x \log y}$ d) $\frac{1}{y + \log x}$
Ans. $y = \log \left[\frac{x}{y} y = \frac{\log x}{\log y} - y \log y = \log x\right]$
 $\Rightarrow y \frac{d}{dx} \log y + \log y$. $\frac{d}{dx} y = \frac{d}{dx} \log x$ $y - \frac{1}{y} \cdot \frac{dy}{dx} + \log y$. $\frac{dy}{dx} = \frac{1}{x}$
 $\Rightarrow \frac{dy}{dx} [1 + \log y] = \frac{1}{x} - \frac{dy}{dx} = \frac{1}{x + 1 \log y} = \frac{1}{x + x \log y}$ (Ans.)
66. $\int_{1}^{2} \frac{(\log_{x} (2x))^{n+1} - 1}{n+1}$ b) $\left[(\log_{x} (2z))^{(n+1)} + 1 \right]$
 $c) \frac{(\log_{x} (2z))^{n+1} - 1}{n+1}$ d) None of these
Ans. $x = \log y = e^{t}$, then $\frac{dy}{dx} = \frac{1}{t}$, $\frac{dy}{dt} = e^{t}$ $\frac{dy}{dx} = \frac{dy}{dx + 1}$ (Ans.)
68. $\int 2^{2x} \cdot 3^{2x} \cdot 5^{x} dx = \frac{1}{2t} - \frac{2t^{2x}}{3^{2x} \cdot 5^{x}} dx = \frac{1}{t} - \frac{2t^{2x}}{t} \frac{3^{2x} \cdot 5^{x}}{t} dx = \frac{2t^{2x}}{t} \frac{3^{2x} - 5^{x}}{t} = \frac{1}{t} - \frac{2t^{2x}}{t} \frac{3^{2x} \cdot 5^{x}}{t} dx = \frac{1}{$

69. The points on the curve $y = x^3 - x^2 - x + 1$, where the tangent is parallel to x – axis are **Dec-2013** Ans. a

Integral Calculus

13.13

	a) $\left(\frac{-1}{3}, \frac{32}{27}\right)$ and $(1, 0)$ b $(0, 0)$ and (1)	, 0) (c) (1, 0) and (1, 1)	(d) (0, 1) and (1, 1)
	Ans. $y = x^3 - x^2 - x + 1$ $\frac{dy}{dx} = 3x^2$	$-2x-1=0\frac{dy}{dx}=\tan 0=0$	$3x^2 - (3x - x) - 1 = 0$
	$3x^2 - 3x + x - 1 = 0 3x(x - 1) - (x - 1)$	(3x+1)(x-1) = 0	$x=1$ or $x=\frac{-1}{3}$
	$x = 1, y = 0$ (1,0) $x = \frac{-1}{3}, \qquad y$	$=\frac{32}{27}$ $\left(\frac{-1}{3},\frac{32}{27}\right)$	
70.	$\int (p)^{2x} dx $	21 (5 21)	Dec-2013 Ans. a
	(a) $\frac{a^{2x}}{2\log a}$ (b) $\frac{2a^{2x}}{\log a}$	(c) $\frac{a^{2x} \cdot \log a}{2}$	(d) None of these
	Ans. Formula, $\int a^x dx = \frac{a^x}{\log a} + \frac{1}{\log a}$	$\int a^{2x} dx =$	$=\frac{a^{2x}}{2\log a}+c \text{ (Ans.)}$
71.	$\int_{0}^{5} \frac{x^{2} dx}{x^{2} + (5 - x)^{2}}$ is equal to		June-2014 Ans. (b)
	a) 5 b) $\frac{5}{2}$	c) 1	d) None of these
72.	If $y = ae^{nx} + be^{-nx}$ then $\frac{d^2y}{dx^2}$ is equal	to	June-2014 Ans. a
	a) $n^2 y$ b) $- n^2 y$	c) ny	d) None of these
	Ans. $y = ae^{nx} + be^{-nx}$ $\frac{dy}{dx} = and$	$e^{nx} - bne^{-nx} \frac{d^2y}{dx^2} = an^2e^{nx} + bn^2$	$+e^{nx}=n^2y$
73.	The value of definite integral $\int_{-\infty}^{2} 1-x dx$	x =	Dec-2014 Ans. (d)
	a) 0 Ans. $\int_{0}^{2} 1-x dx$ $\Rightarrow -\int_{0}^{1} (1-x) dx + \int_{0}^{1} (1-x) dx$	c) $3/2$ $-\int_{0}^{2} (1-x) dx \implies \left(x - \frac{x^2}{2}\right)_{1}^{2} - \left(x - \frac{x^2}{2}\right)_{1}^{2}$	$\frac{d}{2} \frac{1}{2} \frac{1}$
	$\Rightarrow \left\{ (2-2) - \left(1 - \frac{1}{2}\right) \right\} - \left(1 - \frac{1}{2}\right)^0 =$	$\Rightarrow \frac{1}{2} - \frac{1}{2} = 1 (Ans)$	
74.	If $y = 1 + \frac{x}{\angle 1} + \frac{x^2}{\angle 2} + \dots + \frac{x^n}{\angle n} + \dots$	then	Dec-2014 Ans. (b)
	the value of $\frac{dy}{dx} - y =$		
	a) 1 b) 0 dr	c) 2	d) – 1
75.	The value of $\int_0^{1/2} \frac{dx}{\sqrt{3-2x}}$ is		June-2015 Ans. (c)
	a) 1 b) $1 - \sqrt{3/2}$	c) $\sqrt{3} - \sqrt{2}$	d) $\sqrt{2} - \sqrt{3}$
	Ans. $\int_{0}^{1/2} \frac{dx}{\sqrt{3-2x}} \qquad 3-2x = z$	-2dx = dz	
	$\frac{-1}{2} \int_{3}^{2} \frac{dz}{\sqrt{z}} = \frac{1}{2} \left[\frac{z^{\frac{-1}{2}+1}}{\frac{-1}{2}+1} \right]_{2}^{3}$	$\Rightarrow \left(\sqrt{z}\right)_2^3 = \left(\sqrt{3} - \sqrt{2}\right)$	
76.	The value of $\int_{0}^{2} xe^{x^{2}} dx$ is		June-2015 Ans. (d)

Integral Calculus

13.14

Integral Calculus		13.	16	GOPAL BHOOT
	a) $\frac{2\log x}{\left(1+\log x\right)^2}$	(b) $\frac{\log x}{(1+\log x)}$	(c) $\frac{\log x}{(1+\log x)^2}$	(d) None of the above
95.	If $y = 1 + \frac{x}{11} + \frac{x^2}{12} + \frac{x^3}{13}$.	∞,	, then the value of $\frac{dy}{dx}$ is e	equal to : Dec-2017 Ans. (b)
	a) x	(b) y	(c) 1	(d) 0
96.	$\int x \cdot e^{x^2} dx$ is equal to :		. 12	Dec-2017 Ans. (c) x^{2}
	a) $2e^x + c$	(b) $e^x + c$	(c) $\frac{1}{2} \cdot e^x + c$	(d) $xe^x + c$
97.	If $x = at^2$, $y = 2at$ the	en the value of $\frac{dy}{dx}$ at t = 2	2 is :	Dec-2017 Ans. (c)
	a) 2	(b) 4	(c) $\frac{1}{2}$	(d) $\frac{1}{4}$
98.	If $y = \log x^x$ then $\frac{dy}{dx} = -$:	X	Dec-2017 Ans. (a)
	a) log ex	(b) $\log \frac{x}{x}$	(c) $\log \frac{\pi}{e}$	(d) 1
99.	The value of $\int_{1}^{2} \frac{1-x}{1+x} dx$	tis equal to :		May-2018 Ans. b
	(a) $\log \frac{3}{2} - 1$	(b) $2\log_2^3 - 1$	(c) $\frac{1}{2}\log\frac{3}{2} - x$	(d) $\frac{1}{2}\log\frac{2}{3}-1$
100.	$\int_0^2 \frac{3^{\sqrt{x}}}{\sqrt{x}} dx \text{ is equal to}$			May-2018 Ans. (c)
	(a) $\frac{2\sqrt{2}}{\log_e 3}$	(b) 0	(c) $\frac{2(3\sqrt{2}-1)}{\log_e 3}$	(d) $\frac{3\sqrt{2}}{\sqrt{2}}$
101.	The value of $\int_0^2 \frac{\sqrt{x}}{\sqrt{x} + \sqrt{x}}$	$\frac{1}{2+x} dx$ is :		May-2018 Ans. (d)
	a) 0	b) 3	c) 2	d) 1
102.	$\lim_{x \to 1}, \frac{x + x^2 + x^3 \dots + x}{x - 1}$	$\frac{n}{n}$		May-2018 Ans. (b)
	a) (n)	(b) $\frac{n(n+1)}{2}$	(c) (n+1)	d) n (n+1)
103.	The cost function for th	ne production of x units of	of a commodity is given	by May-2018 Ans. (a)
	$C(x) = 2x^3 + 15x^2 + 36x^2$	x+15		
	The cost will be minim 2^{3}	um. When 'x' is equal to	: c) 1	d) (1
	$2e^{1/x-3x}$	0) 2	C) I	u) +
104.	$\lim_{x \to 0} \frac{2^{x}}{e^{1/x + 4x}} = ?$			May-2018 Ans. (c)
	a) -3	b) 0	c) 2	d) 9
105.	Let $x = at^3$, $y = \frac{a}{t^2}$. The	hen $\frac{dy}{dx} =$		Nov-2018Ans. b
	a) $\frac{-1}{t^6}$	b) $\frac{-3a}{t^6}$	c) $\frac{1}{3at^{6}}$	d) None of the above
106.	$\int x(x^2+4)^5 dx$ is equal	to		Nov-2018 Ans. (b)
	(a) $(x^2+4)^6+c$	(b) $\frac{1}{12}(x^2+4)^6+c$	(c) $\frac{1}{2}(x^2+4)^6+c$	(d) None of these
107.	$\int_{1}^{3} (1+3x-x^{3}) dx$ is equ	al to		Nov-2018 Ans. (a)
	(a) -4	(b) 4	(c) 3	(d) -3
108.	$xy = 1$ then $y^2 + \frac{dy}{dy} = 2$?		Nov-2018 Ans . (d)
	(a) 1	(b) 0	(c) 2	(d) None of the above

109.	If the given cost of funct	ion of a commodity is gi	iven by $C = 150x - 5x^2 + \frac{1}{2}$	$\frac{x^3}{6}$, where C stands for cost
	and x stands for output, i	f the average cost is equa	al to the marginal cost the	en the output $x = $
				Ans. (c) June-2019
	(a) 5	(b) 10	(c) 15	(d) 20
110.	If $2^x - 2^y = 2^{x-y}$ then	$\frac{dy}{dx}$ at x = y = 2		Ans. (a) June-2019
	(a) 1	(b) 2	(c) 4	(d) 5
111.	$\int_{2} \frac{\sqrt{x}}{\sqrt{5-x} + \sqrt{x}} dx =$			Ans. (c) June-2019
	(a) 1	(b) 1/2	(c) 2	(d) 3/2
112.	$\int e^x (x^2 + 2x) dx =$			Ans. (c) June-2019
	(a) $x^2 \cdot e^2 + c$	(b) $e^2 \cdot x + c$	(c) $-e^{x}x^{2} + c$	(d) $-e^{x} \cdot x + c$
113.	$\int \log_e(a^x) dx =$			Ans. (a) June-2019
	(a) $\log a\left(\frac{x^2}{2}\right) + c$	(b) $\log a\left(\frac{x}{2}\right) + c$	(c) $x \log a^x - x + c$	(d) $x \log a^x - c$
114.	$\int^{a^{x} dx.}$			Nov-2019 Ans. (d)
	(a) $x^x (1 + \log x)$	$(b)1 + \log x$	(c) x. log x	(d) $\frac{a^x}{\log a} + c$
115.	$\int x \cdot e^x dx.$			Nov-2019 Ans. (a)
	(a) $e^x (x-1) + c$	(b) $e^x \cdot x + e^x + c$	(c) $\log x + e^x + c$	(d) $\frac{x^2}{e^x} + c$
116.	$\int (4x+3)^6 dx.$			Nov-2019 Ans. (a)
	(a) $\frac{1}{28}(4x-3)^7 + c$	(b) $\frac{1}{7}(4x-3)^7 + c$	$(c)\frac{1}{6}(4x+3)^6+c$	(d) $\frac{4x}{5} + \frac{3}{5} + c$
117.	$\int_{-1}^{1} (2x^2 - x^3) dx.$			Nov-2019 Ans. (a)
	(a) 4/3	(b) 1	(c) 2	(d) 2/3
118.	$\frac{d}{dx}(x.\log x)$			Nov-2019 Ans. (b)
	(a) $x(1 + \log x)$	(b) $1 + \log x$	(c) $e^x x$. log x	(d) $x^2 (\log x)$
119.	Differentiate $x^x w. r. t x$			Nov-2019 Ans. (a)
	(a) $X^{-}(1 + \log X)$ c $x^{2} \cdot e^{x} dx$.	(D) y /X	(c) - y/x	(d) $y + x^{-1} \log x$
120.	J (a) $2x.e^x$	(b) $e^x(x^2 - 2x)$	(c) $x^2 \cdot e^x - e^x \cdot (2x) +$	Nov-2019 Ans. (c) + 2(d) $e^x(x-1)$

Answer Key

1	b	2	с	3	a	4	b	5	b	6	с	7	b	8	d	9	a	10	a
11	b	12	с	13	a	14	с	15	a	16	b	17	b	18	a	19	a	20	с
21	с	22	b	23	с	24	a	25	b	26	b	27	с	28	b	29	a	30	с
31	с	32	b	33	с	34	a	35	b	36	с	37	b	38	a	39	a	40	a
41	b	42	b	43	a	44	b	45	a	46	с	47	с	48	a	49	b	50	b
51	b	52	с	53	b	54	a	55	с	56	a	57	b	58	с	59	d	60	b
61	b	62	с	63	с	64	с	65	b	66	a	67	b	68	b	69	a	70	a
71	b	72	a	73	d	74	b	75	с	76	d	77	с	78	b	79	a	80	b
81	a	82	с	83	b	84	a	85	a	86	с	87	b	88	a	89	b	90	a
91	b	92	a	93	a	94	с	95	b	96	с	97	с	98	a	99	b	100	c
101	d	102	b	103	a	104	с	105	b	106	b	107	a	108	d	109	с	110	a
111	c	112	с	113	a	114	d	115	a	116	a	117	a	118	b	119	a	120	с